Spaces:
Running
Running
import gradio as gr | |
from huggingface_hub import InferenceClient | |
# Initialize the InferenceClient with your chat model. | |
client = InferenceClient("amusktweewt/tiny-model-500M-chat-v2") | |
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): | |
""" | |
Builds a chat prompt using a simple template: | |
- Optionally includes a system message. | |
- Iterates over conversation history (each exchange as a tuple of (user, assistant)). | |
- Adds the new user message and appends an empty assistant turn. | |
Then it streams the response from the model. | |
""" | |
messages = [] | |
# Include the system prompt if provided. | |
if system_message: | |
messages.append({"role": "system", "content": system_message}) | |
# Append conversation history. | |
if history: | |
for user_msg, bot_msg in history: | |
messages.append({"role": "user", "content": user_msg}) | |
messages.append({"role": "assistant", "content": bot_msg}) | |
# Add the new user message and an empty assistant response | |
# (this mimics your template where the assistant turn is empty to be filled). | |
messages.append({"role": "user", "content": message}) | |
messages.append({"role": "assistant", "content": ""}) | |
response_text = "" | |
# Stream the response token-by-token. | |
for resp in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = resp.choices[0].delta.content | |
response_text += token | |
yield response_text | |
# Create a Gradio ChatInterface. | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |