Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,57 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
messages.append({"role": "
|
25 |
-
|
|
|
|
|
|
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
33 |
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
):
|
37 |
-
token =
|
38 |
-
|
39 |
-
|
40 |
-
yield response
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
# Initialize the InferenceClient with your chat model.
|
5 |
+
client = InferenceClient("amusktweewt/tiny-model-500M-chat-v2")
|
6 |
+
|
7 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p):
|
8 |
+
"""
|
9 |
+
Builds a chat prompt using a simple template:
|
10 |
+
- Optionally includes a system message.
|
11 |
+
- Iterates over conversation history (each exchange as a tuple of (user, assistant)).
|
12 |
+
- Adds the new user message and appends an empty assistant turn.
|
13 |
+
Then it streams the response from the model.
|
14 |
+
"""
|
15 |
+
messages = []
|
16 |
+
|
17 |
+
# Include the system prompt if provided.
|
18 |
+
if system_message:
|
19 |
+
messages.append({"role": "system", "content": system_message})
|
20 |
+
|
21 |
+
# Append conversation history.
|
22 |
+
if history:
|
23 |
+
for user_msg, bot_msg in history:
|
24 |
+
messages.append({"role": "user", "content": user_msg})
|
25 |
+
messages.append({"role": "assistant", "content": bot_msg})
|
26 |
+
|
27 |
+
# Add the new user message and an empty assistant response
|
28 |
+
# (this mimics your template where the assistant turn is empty to be filled).
|
29 |
messages.append({"role": "user", "content": message})
|
30 |
+
messages.append({"role": "assistant", "content": ""})
|
31 |
+
|
32 |
+
response_text = ""
|
33 |
+
# Stream the response token-by-token.
|
34 |
+
for resp in client.chat_completion(
|
35 |
messages,
|
36 |
max_tokens=max_tokens,
|
37 |
stream=True,
|
38 |
temperature=temperature,
|
39 |
top_p=top_p,
|
40 |
):
|
41 |
+
token = resp.choices[0].delta.content
|
42 |
+
response_text += token
|
43 |
+
yield response_text
|
|
|
44 |
|
45 |
+
# Create a Gradio ChatInterface.
|
|
|
|
|
|
|
46 |
demo = gr.ChatInterface(
|
47 |
respond,
|
48 |
additional_inputs=[
|
49 |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
],
|
54 |
)
|
55 |
|
|
|
56 |
if __name__ == "__main__":
|
57 |
demo.launch()
|