import gradio as gr from huggingface_hub import InferenceClient # Initialize the InferenceClient with your chat model. client = InferenceClient("amusktweewt/tiny-model-500M-chat-v2") def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): """ Builds a chat prompt using a simple template: - Optionally includes a system message. - Iterates over conversation history (each exchange as a tuple of (user, assistant)). - Adds the new user message and appends an empty assistant turn. Then it streams the response from the model. """ messages = [] # Include the system prompt if provided. if system_message: messages.append({"role": "system", "content": system_message}) # Append conversation history. if history: for user_msg, bot_msg in history: messages.append({"role": "user", "content": user_msg}) messages.append({"role": "assistant", "content": bot_msg}) # Add the new user message and an empty assistant response # (this mimics your template where the assistant turn is empty to be filled). messages.append({"role": "user", "content": message}) messages.append({"role": "assistant", "content": ""}) response_text = "" # Stream the response token-by-token. for resp in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = resp.choices[0].delta.content response_text += token yield response_text # Create a Gradio ChatInterface. demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()