newTryOn / models /face_parsing /face_dataset.py
amanSethSmava
new commit
6d314be
raw
history blame
3.2 kB
# #!/usr/bin/python
# # -*- encoding: utf-8 -*-
#
# import torch
# from torch.utils.data import Dataset
# import torchvision.transforms as transforms
#
# import os.path as osp
# import os
# from PIL import Image
# import numpy as np
# import json
# import cv2
#
# from .transform import *
#
#
#
# class FaceMask(Dataset):
# def __init__(self, rootpth, cropsize=(640, 480), mode='scripts', *args, **kwargs):
# super(FaceMask, self).__init__(*args, **kwargs)
# assert mode in ('scripts', 'val', 'test')
# self.mode = mode
# self.ignore_lb = 255
# self.rootpth = rootpth
#
# self.imgs = os.listdir(os.path.join(self.rootpth, 'CelebA-HQ-img'))
#
# # pre-processing
# self.to_tensor = transforms.Compose([
# transforms.ToTensor(),
# transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
# ])
# self.trans_train = Compose([
# ColorJitter(
# brightness=0.5,
# contrast=0.5,
# saturation=0.5),
# HorizontalFlip(),
# RandomScale((0.75, 1.0, 1.25, 1.5, 1.75, 2.0)),
# RandomCrop(cropsize)
# ])
#
# def __getitem__(self, idx):
# impth = self.imgs[idx]
# img = Image.open(osp.join(self.rootpth, 'CelebA-HQ-img', impth))
# img = img.resize((512, 512), Image.BILINEAR)
# label = Image.open(osp.join(self.rootpth, 'Mask_less', impth[:-3]+'png')).convert('P')
# # print(np.unique(np.array(label)))
# if self.mode == 'scripts':
# im_lb = dict(im=img, lb=label)
# im_lb = self.trans_train(im_lb)
# img, label = im_lb['im'], im_lb['lb']
# img = self.to_tensor(img)
# label = np.array(label).astype(np.int64)[np.newaxis, :]
# return img, label
#
# def __len__(self):
# return len(self.imgs)
#
#
# if __name__ == "__main__":
# face_data = '/home/zll/data/CelebAMask-HQ/CelebA-HQ-img'
# face_sep_mask = '/home/zll/data/CelebAMask-HQ/CelebAMask-HQ-mask-anno'
# mask_path = '/home/zll/data/CelebAMask-HQ/mask'
# counter = 0
# total = 0
# for i in range(15):
# # files = os.listdir(osp.join(face_sep_mask, str(i)))
#
# atts = ['skin', 'nose', 'eye_g', 'l_eye', 'r_eye', 'l_brow', 'r_brow', 'l_ear', 'r_ear', 'mouth', 'u_lip',
# 'l_lip', 'hair', 'hat', 'ear_r', 'neck_l', 'neck', 'cloth']
#
# for j in range(i*2000, (i+1)*2000):
#
# mask = np.zeros((512, 512))
#
# for l, att in enumerate(atts, 1):
# total += 1
# file_name = ''.join([str(j).rjust(5, '0'), '_', att, '.png'])
# path = osp.join(face_sep_mask, str(i), file_name)
#
# if os.path.exists(path):
# counter += 1
# sep_mask = np.array(Image.open(path).convert('P'))
# # print(np.unique(sep_mask))
#
# mask[sep_mask == 225] = l
# cv2.imwrite('{}/{}.png'.format(mask_path, j), mask)
# print(j)
#
# print(counter, total)
#
#
#
#
#
#
#
#
#
#
#
#
#
#