File size: 3,196 Bytes
6d314be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# #!/usr/bin/python
# # -*- encoding: utf-8 -*-
#
# import torch
# from torch.utils.data import Dataset
# import torchvision.transforms as transforms
#
# import os.path as osp
# import os
# from PIL import Image
# import numpy as np
# import json
# import cv2
#
# from .transform import *
#
#
#
# class FaceMask(Dataset):
#     def __init__(self, rootpth, cropsize=(640, 480), mode='scripts', *args, **kwargs):
#         super(FaceMask, self).__init__(*args, **kwargs)
#         assert mode in ('scripts', 'val', 'test')
#         self.mode = mode
#         self.ignore_lb = 255
#         self.rootpth = rootpth
#
#         self.imgs = os.listdir(os.path.join(self.rootpth, 'CelebA-HQ-img'))
#
#         #  pre-processing
#         self.to_tensor = transforms.Compose([
#             transforms.ToTensor(),
#             transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
#             ])
#         self.trans_train = Compose([
#             ColorJitter(
#                 brightness=0.5,
#                 contrast=0.5,
#                 saturation=0.5),
#             HorizontalFlip(),
#             RandomScale((0.75, 1.0, 1.25, 1.5, 1.75, 2.0)),
#             RandomCrop(cropsize)
#             ])
#
#     def __getitem__(self, idx):
#         impth = self.imgs[idx]
#         img = Image.open(osp.join(self.rootpth, 'CelebA-HQ-img', impth))
#         img = img.resize((512, 512), Image.BILINEAR)
#         label = Image.open(osp.join(self.rootpth, 'Mask_less', impth[:-3]+'png')).convert('P')
#         # print(np.unique(np.array(label)))
#         if self.mode == 'scripts':
#             im_lb = dict(im=img, lb=label)
#             im_lb = self.trans_train(im_lb)
#             img, label = im_lb['im'], im_lb['lb']
#         img = self.to_tensor(img)
#         label = np.array(label).astype(np.int64)[np.newaxis, :]
#         return img, label
#
#     def __len__(self):
#         return len(self.imgs)
#
#
# if __name__ == "__main__":
#     face_data = '/home/zll/data/CelebAMask-HQ/CelebA-HQ-img'
#     face_sep_mask = '/home/zll/data/CelebAMask-HQ/CelebAMask-HQ-mask-anno'
#     mask_path = '/home/zll/data/CelebAMask-HQ/mask'
#     counter = 0
#     total = 0
#     for i in range(15):
#         # files = os.listdir(osp.join(face_sep_mask, str(i)))
#
#         atts = ['skin', 'nose', 'eye_g', 'l_eye', 'r_eye', 'l_brow', 'r_brow', 'l_ear', 'r_ear', 'mouth', 'u_lip',
#               'l_lip', 'hair', 'hat', 'ear_r', 'neck_l', 'neck', 'cloth']
#
#         for j in range(i*2000, (i+1)*2000):
#
#             mask = np.zeros((512, 512))
#
#             for l, att in enumerate(atts, 1):
#                 total += 1
#                 file_name = ''.join([str(j).rjust(5, '0'), '_', att, '.png'])
#                 path = osp.join(face_sep_mask, str(i), file_name)
#
#                 if os.path.exists(path):
#                     counter += 1
#                     sep_mask = np.array(Image.open(path).convert('P'))
#                     # print(np.unique(sep_mask))
#
#                     mask[sep_mask == 225] = l
#             cv2.imwrite('{}/{}.png'.format(mask_path, j), mask)
#             print(j)
#
#     print(counter, total)
#
#
#
#
#
#
#
#
#
#
#
#
#
#