newTryOn / models /sean_codes /options /train_options.py
amanSethSmava
new commit
6d314be
raw
history blame
3.45 kB
"""
Copyright (C) 2019 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
from .base_options import BaseOptions
class TrainOptions(BaseOptions):
def initialize(self, parser):
BaseOptions.initialize(self, parser)
# for displays
parser.add_argument('--display_freq', type=int, default=100, help='frequency of showing training results on screen')
parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console')
parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results')
parser.add_argument('--save_epoch_freq', type=int, default=10, help='frequency of saving sean_checkpoints at the end of epochs')
parser.add_argument('--no_html', default=False, help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/')
parser.add_argument('--debug', action='store_true', help='only do one epoch and displays at each iteration')
parser.add_argument('--tf_log', action='store_true', help='if specified, use tensorboard logging. Requires tensorflow installed')
# for training
parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model')
parser.add_argument('--which_epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model')
parser.add_argument('--niter', type=int, default=50, help='# of iter at starting learning rate. This is NOT the total #epochs. Totla #epochs is niter + niter_decay')
parser.add_argument('--niter_decay', type=int, default=50, help='# of iter to linearly decay learning rate to zero')
parser.add_argument('--optimizer', type=str, default='adam')
parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam')
parser.add_argument('--beta2', type=float, default=0.999, help='momentum term of adam')
parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam')
parser.add_argument('--D_steps_per_G', type=int, default=1, help='number of discriminator iterations per generator iterations.')
# for discriminators
parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer')
parser.add_argument('--lambda_feat', type=float, default=10.0, help='weight for feature matching loss')
parser.add_argument('--lambda_vgg', type=float, default=10.0, help='weight for vgg loss')
parser.add_argument('--no_ganFeat_loss', action='store_true', help='if specified, do *not* use discriminator feature matching loss')
parser.add_argument('--no_vgg_loss', action='store_true', help='if specified, do *not* use VGG feature matching loss')
parser.add_argument('--gan_mode', type=str, default='hinge', help='(ls|original|hinge)')
parser.add_argument('--netD', type=str, default='multiscale', help='(n_layers|multiscale|image)')
parser.add_argument('--no_TTUR', action='store_true', help='Use TTUR training scheme')
parser.add_argument('--lambda_kld', type=float, default=0.005)
parser.add_argument('--status', type=str, default='scripts')
self.isTrain = True
return parser