""" Copyright (C) 2019 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode). """ from .base_options import BaseOptions class TrainOptions(BaseOptions): def initialize(self, parser): BaseOptions.initialize(self, parser) # for displays parser.add_argument('--display_freq', type=int, default=100, help='frequency of showing training results on screen') parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console') parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results') parser.add_argument('--save_epoch_freq', type=int, default=10, help='frequency of saving sean_checkpoints at the end of epochs') parser.add_argument('--no_html', default=False, help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/') parser.add_argument('--debug', action='store_true', help='only do one epoch and displays at each iteration') parser.add_argument('--tf_log', action='store_true', help='if specified, use tensorboard logging. Requires tensorflow installed') # for training parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') parser.add_argument('--which_epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') parser.add_argument('--niter', type=int, default=50, help='# of iter at starting learning rate. This is NOT the total #epochs. Totla #epochs is niter + niter_decay') parser.add_argument('--niter_decay', type=int, default=50, help='# of iter to linearly decay learning rate to zero') parser.add_argument('--optimizer', type=str, default='adam') parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam') parser.add_argument('--beta2', type=float, default=0.999, help='momentum term of adam') parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam') parser.add_argument('--D_steps_per_G', type=int, default=1, help='number of discriminator iterations per generator iterations.') # for discriminators parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in first conv layer') parser.add_argument('--lambda_feat', type=float, default=10.0, help='weight for feature matching loss') parser.add_argument('--lambda_vgg', type=float, default=10.0, help='weight for vgg loss') parser.add_argument('--no_ganFeat_loss', action='store_true', help='if specified, do *not* use discriminator feature matching loss') parser.add_argument('--no_vgg_loss', action='store_true', help='if specified, do *not* use VGG feature matching loss') parser.add_argument('--gan_mode', type=str, default='hinge', help='(ls|original|hinge)') parser.add_argument('--netD', type=str, default='multiscale', help='(n_layers|multiscale|image)') parser.add_argument('--no_TTUR', action='store_true', help='Use TTUR training scheme') parser.add_argument('--lambda_kld', type=float, default=0.005) parser.add_argument('--status', type=str, default='scripts') self.isTrain = True return parser