amanSethSmava
new commit
6d314be
raw
history blame
9.77 kB
import os
import cv2
import copy
import dlib
import math
import argparse
import numpy as np
import gradio as gr
from matplotlib import pyplot as plt
import torch
# private package
from lib import utility
class GetCropMatrix():
"""
from_shape -> transform_matrix
"""
def __init__(self, image_size, target_face_scale, align_corners=False):
self.image_size = image_size
self.target_face_scale = target_face_scale
self.align_corners = align_corners
def _compose_rotate_and_scale(self, angle, scale, shift_xy, from_center, to_center):
cosv = math.cos(angle)
sinv = math.sin(angle)
fx, fy = from_center
tx, ty = to_center
acos = scale * cosv
asin = scale * sinv
a0 = acos
a1 = -asin
a2 = tx - acos * fx + asin * fy + shift_xy[0]
b0 = asin
b1 = acos
b2 = ty - asin * fx - acos * fy + shift_xy[1]
rot_scale_m = np.array([
[a0, a1, a2],
[b0, b1, b2],
[0.0, 0.0, 1.0]
], np.float32)
return rot_scale_m
def process(self, scale, center_w, center_h):
if self.align_corners:
to_w, to_h = self.image_size - 1, self.image_size - 1
else:
to_w, to_h = self.image_size, self.image_size
rot_mu = 0
scale_mu = self.image_size / (scale * self.target_face_scale * 200.0)
shift_xy_mu = (0, 0)
matrix = self._compose_rotate_and_scale(
rot_mu, scale_mu, shift_xy_mu,
from_center=[center_w, center_h],
to_center=[to_w / 2.0, to_h / 2.0])
return matrix
class TransformPerspective():
"""
image, matrix3x3 -> transformed_image
"""
def __init__(self, image_size):
self.image_size = image_size
def process(self, image, matrix):
return cv2.warpPerspective(
image, matrix, dsize=(self.image_size, self.image_size),
flags=cv2.INTER_LINEAR, borderValue=0)
class TransformPoints2D():
"""
points (nx2), matrix (3x3) -> points (nx2)
"""
def process(self, srcPoints, matrix):
# nx3
desPoints = np.concatenate([srcPoints, np.ones_like(srcPoints[:, [0]])], axis=1)
desPoints = desPoints @ np.transpose(matrix) # nx3
desPoints = desPoints[:, :2] / desPoints[:, [2, 2]]
return desPoints.astype(srcPoints.dtype)
class Alignment:
def __init__(self, args, model_path, dl_framework, device_ids):
self.input_size = 256
self.target_face_scale = 1.0
self.dl_framework = dl_framework
# model
if self.dl_framework == "pytorch":
# conf
self.config = utility.get_config(args)
self.config.device_id = device_ids[0]
# set environment
utility.set_environment(self.config)
self.config.init_instance()
if self.config.logger is not None:
self.config.logger.info("Loaded configure file %s: %s" % (args.config_name, self.config.id))
self.config.logger.info("\n" + "\n".join(["%s: %s" % item for item in self.config.__dict__.items()]))
net = utility.get_net(self.config)
if device_ids == [-1]:
checkpoint = torch.load(model_path, map_location="cpu")
else:
checkpoint = torch.load(model_path)
net.load_state_dict(checkpoint["net"])
net = net.to(self.config.device_id)
net.eval()
self.alignment = net
else:
assert False
self.getCropMatrix = GetCropMatrix(image_size=self.input_size, target_face_scale=self.target_face_scale,
align_corners=True)
self.transformPerspective = TransformPerspective(image_size=self.input_size)
self.transformPoints2D = TransformPoints2D()
def norm_points(self, points, align_corners=False):
if align_corners:
# [0, SIZE-1] -> [-1, +1]
return points / torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2) * 2 - 1
else:
# [-0.5, SIZE-0.5] -> [-1, +1]
return (points * 2 + 1) / torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1
def denorm_points(self, points, align_corners=False):
if align_corners:
# [-1, +1] -> [0, SIZE-1]
return (points + 1) / 2 * torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2)
else:
# [-1, +1] -> [-0.5, SIZE-0.5]
return ((points + 1) * torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1) / 2
def preprocess(self, image, scale, center_w, center_h):
matrix = self.getCropMatrix.process(scale, center_w, center_h)
input_tensor = self.transformPerspective.process(image, matrix)
input_tensor = input_tensor[np.newaxis, :]
input_tensor = torch.from_numpy(input_tensor)
input_tensor = input_tensor.float().permute(0, 3, 1, 2)
input_tensor = input_tensor / 255.0 * 2.0 - 1.0
input_tensor = input_tensor.to(self.config.device_id)
return input_tensor, matrix
def postprocess(self, srcPoints, coeff):
# dstPoints = self.transformPoints2D.process(srcPoints, coeff)
# matrix^(-1) * src = dst
# src = matrix * dst
dstPoints = np.zeros(srcPoints.shape, dtype=np.float32)
for i in range(srcPoints.shape[0]):
dstPoints[i][0] = coeff[0][0] * srcPoints[i][0] + coeff[0][1] * srcPoints[i][1] + coeff[0][2]
dstPoints[i][1] = coeff[1][0] * srcPoints[i][0] + coeff[1][1] * srcPoints[i][1] + coeff[1][2]
return dstPoints
def analyze(self, image, scale, center_w, center_h):
input_tensor, matrix = self.preprocess(image, scale, center_w, center_h)
if self.dl_framework == "pytorch":
with torch.no_grad():
output = self.alignment(input_tensor)
landmarks = output[-1][0]
else:
assert False
landmarks = self.denorm_points(landmarks)
landmarks = landmarks.data.cpu().numpy()[0]
landmarks = self.postprocess(landmarks, np.linalg.inv(matrix))
return landmarks
def draw_pts(img, pts, mode="pts", shift=4, color=(0, 255, 0), radius=1, thickness=1, save_path=None, dif=0,
scale=0.3, concat=False, ):
img_draw = copy.deepcopy(img)
for cnt, p in enumerate(pts):
if mode == "index":
cv2.putText(img_draw, str(cnt), (int(float(p[0] + dif)), int(float(p[1] + dif))), cv2.FONT_HERSHEY_SIMPLEX,
scale, color, thickness)
elif mode == 'pts':
if len(img_draw.shape) > 2:
# 此处来回切换是因为opencv的bug
img_draw = cv2.cvtColor(img_draw, cv2.COLOR_BGR2RGB)
img_draw = cv2.cvtColor(img_draw, cv2.COLOR_RGB2BGR)
cv2.circle(img_draw, (int(p[0] * (1 << shift)), int(p[1] * (1 << shift))), radius << shift, color, -1,
cv2.LINE_AA, shift=shift)
else:
raise NotImplementedError
if concat:
img_draw = np.concatenate((img, img_draw), axis=1)
if save_path is not None:
cv2.imwrite(save_path, img_draw)
return img_draw
def process(input_image):
image_draw = copy.deepcopy(input_image)
dets = detector(input_image, 1)
num_faces = len(dets)
if num_faces == 0:
print("Sorry, there were no faces found in '{}'".format(face_file_path))
exit()
results = []
for detection in dets:
face = sp(input_image, detection)
shape = []
for i in range(68):
x = face.part(i).x
y = face.part(i).y
shape.append((x, y))
shape = np.array(shape)
# image_draw = draw_pts(image_draw, shape)
x1, x2 = shape[:, 0].min(), shape[:, 0].max()
y1, y2 = shape[:, 1].min(), shape[:, 1].max()
scale = min(x2 - x1, y2 - y1) / 200 * 1.05
center_w = (x2 + x1) / 2
center_h = (y2 + y1) / 2
scale, center_w, center_h = float(scale), float(center_w), float(center_h)
landmarks_pv = alignment.analyze(input_image, scale, center_w, center_h)
results.append(landmarks_pv)
image_draw = draw_pts(image_draw, landmarks_pv)
return image_draw, results
if __name__ == '__main__':
# face detector
# could be downloaded in this repo: https://github.com/italojs/facial-landmarks-recognition/tree/master
predictor_path = '/path/to/shape_predictor_68_face_landmarks.dat'
detector = dlib.get_frontal_face_detector()
sp = dlib.shape_predictor(predictor_path)
# facial landmark detector
args = argparse.Namespace()
args.config_name = 'alignment'
# could be downloaded here: https://drive.google.com/file/d/1aOx0wYEZUfBndYy_8IYszLPG_D2fhxrT/view
model_path = '/path/to/WFLW_STARLoss_NME_4_02_FR_2_32_AUC_0_605.pkl'
device_ids = '0'
device_ids = list(map(int, device_ids.split(",")))
alignment = Alignment(args, model_path, dl_framework="pytorch", device_ids=device_ids)
# image: input image
# image_draw: draw the detected facial landmarks on image
# results: a list of detected facial landmarks
face_file_path = '/path/to/face/image/bald_guys.jpg'
image = cv2.imread(face_file_path)
image_draw, results = process(image)
# visualize
img = cv2.cvtColor(image_draw, cv2.COLOR_BGR2RGB)
plt.imshow(img)
plt.show()
# demo
# interface = gr.Interface(fn=process, inputs="image", outputs="image")
# interface.launch(share=True)