import os import cv2 import copy import dlib import math import argparse import numpy as np import gradio as gr from matplotlib import pyplot as plt import torch # private package from lib import utility class GetCropMatrix(): """ from_shape -> transform_matrix """ def __init__(self, image_size, target_face_scale, align_corners=False): self.image_size = image_size self.target_face_scale = target_face_scale self.align_corners = align_corners def _compose_rotate_and_scale(self, angle, scale, shift_xy, from_center, to_center): cosv = math.cos(angle) sinv = math.sin(angle) fx, fy = from_center tx, ty = to_center acos = scale * cosv asin = scale * sinv a0 = acos a1 = -asin a2 = tx - acos * fx + asin * fy + shift_xy[0] b0 = asin b1 = acos b2 = ty - asin * fx - acos * fy + shift_xy[1] rot_scale_m = np.array([ [a0, a1, a2], [b0, b1, b2], [0.0, 0.0, 1.0] ], np.float32) return rot_scale_m def process(self, scale, center_w, center_h): if self.align_corners: to_w, to_h = self.image_size - 1, self.image_size - 1 else: to_w, to_h = self.image_size, self.image_size rot_mu = 0 scale_mu = self.image_size / (scale * self.target_face_scale * 200.0) shift_xy_mu = (0, 0) matrix = self._compose_rotate_and_scale( rot_mu, scale_mu, shift_xy_mu, from_center=[center_w, center_h], to_center=[to_w / 2.0, to_h / 2.0]) return matrix class TransformPerspective(): """ image, matrix3x3 -> transformed_image """ def __init__(self, image_size): self.image_size = image_size def process(self, image, matrix): return cv2.warpPerspective( image, matrix, dsize=(self.image_size, self.image_size), flags=cv2.INTER_LINEAR, borderValue=0) class TransformPoints2D(): """ points (nx2), matrix (3x3) -> points (nx2) """ def process(self, srcPoints, matrix): # nx3 desPoints = np.concatenate([srcPoints, np.ones_like(srcPoints[:, [0]])], axis=1) desPoints = desPoints @ np.transpose(matrix) # nx3 desPoints = desPoints[:, :2] / desPoints[:, [2, 2]] return desPoints.astype(srcPoints.dtype) class Alignment: def __init__(self, args, model_path, dl_framework, device_ids): self.input_size = 256 self.target_face_scale = 1.0 self.dl_framework = dl_framework # model if self.dl_framework == "pytorch": # conf self.config = utility.get_config(args) self.config.device_id = device_ids[0] # set environment utility.set_environment(self.config) self.config.init_instance() if self.config.logger is not None: self.config.logger.info("Loaded configure file %s: %s" % (args.config_name, self.config.id)) self.config.logger.info("\n" + "\n".join(["%s: %s" % item for item in self.config.__dict__.items()])) net = utility.get_net(self.config) if device_ids == [-1]: checkpoint = torch.load(model_path, map_location="cpu") else: checkpoint = torch.load(model_path) net.load_state_dict(checkpoint["net"]) net = net.to(self.config.device_id) net.eval() self.alignment = net else: assert False self.getCropMatrix = GetCropMatrix(image_size=self.input_size, target_face_scale=self.target_face_scale, align_corners=True) self.transformPerspective = TransformPerspective(image_size=self.input_size) self.transformPoints2D = TransformPoints2D() def norm_points(self, points, align_corners=False): if align_corners: # [0, SIZE-1] -> [-1, +1] return points / torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2) * 2 - 1 else: # [-0.5, SIZE-0.5] -> [-1, +1] return (points * 2 + 1) / torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1 def denorm_points(self, points, align_corners=False): if align_corners: # [-1, +1] -> [0, SIZE-1] return (points + 1) / 2 * torch.tensor([self.input_size - 1, self.input_size - 1]).to(points).view(1, 1, 2) else: # [-1, +1] -> [-0.5, SIZE-0.5] return ((points + 1) * torch.tensor([self.input_size, self.input_size]).to(points).view(1, 1, 2) - 1) / 2 def preprocess(self, image, scale, center_w, center_h): matrix = self.getCropMatrix.process(scale, center_w, center_h) input_tensor = self.transformPerspective.process(image, matrix) input_tensor = input_tensor[np.newaxis, :] input_tensor = torch.from_numpy(input_tensor) input_tensor = input_tensor.float().permute(0, 3, 1, 2) input_tensor = input_tensor / 255.0 * 2.0 - 1.0 input_tensor = input_tensor.to(self.config.device_id) return input_tensor, matrix def postprocess(self, srcPoints, coeff): # dstPoints = self.transformPoints2D.process(srcPoints, coeff) # matrix^(-1) * src = dst # src = matrix * dst dstPoints = np.zeros(srcPoints.shape, dtype=np.float32) for i in range(srcPoints.shape[0]): dstPoints[i][0] = coeff[0][0] * srcPoints[i][0] + coeff[0][1] * srcPoints[i][1] + coeff[0][2] dstPoints[i][1] = coeff[1][0] * srcPoints[i][0] + coeff[1][1] * srcPoints[i][1] + coeff[1][2] return dstPoints def analyze(self, image, scale, center_w, center_h): input_tensor, matrix = self.preprocess(image, scale, center_w, center_h) if self.dl_framework == "pytorch": with torch.no_grad(): output = self.alignment(input_tensor) landmarks = output[-1][0] else: assert False landmarks = self.denorm_points(landmarks) landmarks = landmarks.data.cpu().numpy()[0] landmarks = self.postprocess(landmarks, np.linalg.inv(matrix)) return landmarks def draw_pts(img, pts, mode="pts", shift=4, color=(0, 255, 0), radius=1, thickness=1, save_path=None, dif=0, scale=0.3, concat=False, ): img_draw = copy.deepcopy(img) for cnt, p in enumerate(pts): if mode == "index": cv2.putText(img_draw, str(cnt), (int(float(p[0] + dif)), int(float(p[1] + dif))), cv2.FONT_HERSHEY_SIMPLEX, scale, color, thickness) elif mode == 'pts': if len(img_draw.shape) > 2: # 此处来回切换是因为opencv的bug img_draw = cv2.cvtColor(img_draw, cv2.COLOR_BGR2RGB) img_draw = cv2.cvtColor(img_draw, cv2.COLOR_RGB2BGR) cv2.circle(img_draw, (int(p[0] * (1 << shift)), int(p[1] * (1 << shift))), radius << shift, color, -1, cv2.LINE_AA, shift=shift) else: raise NotImplementedError if concat: img_draw = np.concatenate((img, img_draw), axis=1) if save_path is not None: cv2.imwrite(save_path, img_draw) return img_draw def process(input_image): image_draw = copy.deepcopy(input_image) dets = detector(input_image, 1) num_faces = len(dets) if num_faces == 0: print("Sorry, there were no faces found in '{}'".format(face_file_path)) exit() results = [] for detection in dets: face = sp(input_image, detection) shape = [] for i in range(68): x = face.part(i).x y = face.part(i).y shape.append((x, y)) shape = np.array(shape) # image_draw = draw_pts(image_draw, shape) x1, x2 = shape[:, 0].min(), shape[:, 0].max() y1, y2 = shape[:, 1].min(), shape[:, 1].max() scale = min(x2 - x1, y2 - y1) / 200 * 1.05 center_w = (x2 + x1) / 2 center_h = (y2 + y1) / 2 scale, center_w, center_h = float(scale), float(center_w), float(center_h) landmarks_pv = alignment.analyze(input_image, scale, center_w, center_h) results.append(landmarks_pv) image_draw = draw_pts(image_draw, landmarks_pv) return image_draw, results if __name__ == '__main__': # face detector # could be downloaded in this repo: https://github.com/italojs/facial-landmarks-recognition/tree/master predictor_path = '/path/to/shape_predictor_68_face_landmarks.dat' detector = dlib.get_frontal_face_detector() sp = dlib.shape_predictor(predictor_path) # facial landmark detector args = argparse.Namespace() args.config_name = 'alignment' # could be downloaded here: https://drive.google.com/file/d/1aOx0wYEZUfBndYy_8IYszLPG_D2fhxrT/view model_path = '/path/to/WFLW_STARLoss_NME_4_02_FR_2_32_AUC_0_605.pkl' device_ids = '0' device_ids = list(map(int, device_ids.split(","))) alignment = Alignment(args, model_path, dl_framework="pytorch", device_ids=device_ids) # image: input image # image_draw: draw the detected facial landmarks on image # results: a list of detected facial landmarks face_file_path = '/path/to/face/image/bald_guys.jpg' image = cv2.imread(face_file_path) image_draw, results = process(image) # visualize img = cv2.cvtColor(image_draw, cv2.COLOR_BGR2RGB) plt.imshow(img) plt.show() # demo # interface = gr.Interface(fn=process, inputs="image", outputs="image") # interface.launch(share=True)