Spaces:
Build error
Build error
import argparse | |
import os | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.data as data | |
import yaml | |
from PIL import Image | |
from tqdm import tqdm | |
from torchvision import transforms, utils | |
from tensorboard_logger import Logger | |
from utils.datasets import * | |
from utils.functions import * | |
from trainer import * | |
torch.backends.cudnn.enabled = True | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = True | |
torch.autograd.set_detect_anomaly(True) | |
Image.MAX_IMAGE_PIXELS = None | |
device = torch.device('cuda') | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--config', type=str, default='001', help='Path to the config file.') | |
parser.add_argument('--real_dataset_path', type=str, default='./data/ffhq-dataset/images/', help='dataset path') | |
parser.add_argument('--dataset_path', type=str, default='./data/stylegan2-generate-images/ims/', help='dataset path') | |
parser.add_argument('--label_path', type=str, default='./data/stylegan2-generate-images/seeds_pytorch_1.8.1.npy', help='laebl path') | |
parser.add_argument('--stylegan_model_path', type=str, default='./pixel2style2pixel/pretrained_models/psp_ffhq_encode.pt', help='pretrained stylegan2 model') | |
parser.add_argument('--arcface_model_path', type=str, default='./pretrained_models/backbone.pth', help='pretrained ArcFace model') | |
parser.add_argument('--parsing_model_path', type=str, default='./pretrained_models/79999_iter.pth', help='pretrained parsing model') | |
parser.add_argument('--log_path', type=str, default='./logs/', help='log file path') | |
parser.add_argument('--resume', action='store_true', help='resume from checkpoint') | |
parser.add_argument('--checkpoint', type=str, default='', help='checkpoint file path') | |
opts = parser.parse_args() | |
log_dir = os.path.join(opts.log_path, opts.config) + '/' | |
os.makedirs(log_dir, exist_ok=True) | |
logger = Logger(log_dir) | |
config = yaml.load(open('./configs/' + opts.config + '.yaml', 'r'), Loader=yaml.FullLoader) | |
batch_size = config['batch_size'] | |
epochs = config['epochs'] | |
iter_per_epoch = config['iter_per_epoch'] | |
img_size = (config['resolution'], config['resolution']) | |
video_data_input = False | |
img_to_tensor = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
]) | |
img_to_tensor_car = transforms.Compose([ | |
transforms.Resize((384, 512)), | |
transforms.Pad(padding=(0, 64, 0, 64)), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) | |
]) | |
# Initialize trainer | |
trainer = Trainer(config, opts) | |
trainer.initialize(opts.stylegan_model_path, opts.arcface_model_path, opts.parsing_model_path) | |
trainer.to(device) | |
noise_exemple = trainer.noise_inputs | |
train_data_split = 0.9 if 'train_split' not in config else config['train_split'] | |
# Load synthetic dataset | |
dataset_A = MyDataSet(image_dir=opts.dataset_path, label_dir=opts.label_path, output_size=img_size, noise_in=noise_exemple, training_set=True, train_split=train_data_split) | |
loader_A = data.DataLoader(dataset_A, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True) | |
# Load real dataset | |
dataset_B = MyDataSet(image_dir=opts.real_dataset_path, label_dir=None, output_size=img_size, noise_in=noise_exemple, training_set=True, train_split=train_data_split) | |
loader_B = data.DataLoader(dataset_B, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True) | |
# Start Training | |
epoch_0 = 0 | |
# check if checkpoint exist | |
if 'checkpoint.pth' in os.listdir(log_dir): | |
epoch_0 = trainer.load_checkpoint(os.path.join(log_dir, 'checkpoint.pth')) | |
if opts.resume: | |
epoch_0 = trainer.load_checkpoint(os.path.join(opts.log_path, opts.checkpoint)) | |
torch.manual_seed(0) | |
os.makedirs(log_dir + 'validation/', exist_ok=True) | |
print("Start!") | |
for n_epoch in tqdm(range(epoch_0, epochs)): | |
iter_A = iter(loader_A) | |
iter_B = iter(loader_B) | |
iter_0 = n_epoch*iter_per_epoch | |
trainer.enc_opt.zero_grad() | |
for n_iter in range(iter_0, iter_0 + iter_per_epoch): | |
if opts.dataset_path is None: | |
z, noise = next(iter_A) | |
img_A = None | |
else: | |
z, img_A, noise = next(iter_A) | |
img_A = img_A.to(device) | |
z = z.to(device) | |
noise = [ee.to(device) for ee in noise] | |
w = trainer.mapping(z) | |
if 'fixed_noise' in config and config['fixed_noise']: | |
img_A, noise = None, None | |
img_B = None | |
if 'use_realimg' in config and config['use_realimg']: | |
try: | |
img_B = next(iter_B) | |
if img_B.size(0) != batch_size: | |
iter_B = iter(loader_B) | |
img_B = next(iter_B) | |
except StopIteration: | |
iter_B = iter(loader_B) | |
img_B = next(iter_B) | |
img_B = img_B.to(device) | |
trainer.update(w=w, img=img_A, noise=noise, real_img=img_B, n_iter=n_iter) | |
if (n_iter+1) % config['log_iter'] == 0: | |
trainer.log_loss(logger, n_iter, prefix='scripts') | |
if (n_iter+1) % config['image_save_iter'] == 0: | |
trainer.save_image(log_dir, n_epoch, n_iter, prefix='/scripts/', w=w, img=img_A, noise=noise) | |
trainer.save_image(log_dir, n_epoch, n_iter+1, prefix='/scripts/', w=w, img=img_B, noise=noise, training_mode=False) | |
trainer.enc_scheduler.step() | |
trainer.save_checkpoint(n_epoch, log_dir) | |
# Test the model on celeba hq dataset | |
with torch.no_grad(): | |
trainer.enc.eval() | |
for i in range(10): | |
image_A = img_to_tensor(Image.open('./data/celeba_hq/%d.jpg' % i)).unsqueeze(0).to(device) | |
output = trainer.test(img=image_A) | |
out_img = torch.cat(output, 3) | |
utils.save_image(clip_img(out_img[:1]), log_dir + 'validation/' + 'epoch_' +str(n_epoch+1) + '_' + str(i) + '.jpg') | |
trainer.compute_loss(w=w, img=img_A, noise=noise, real_img=img_B) | |
trainer.log_loss(logger, n_iter, prefix='validation') | |
trainer.save_model(log_dir) |