Spaces:
Build error
Build error
File size: 6,051 Bytes
6d314be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import argparse
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import yaml
from PIL import Image
from tqdm import tqdm
from torchvision import transforms, utils
from tensorboard_logger import Logger
from utils.datasets import *
from utils.functions import *
from trainer import *
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.autograd.set_detect_anomaly(True)
Image.MAX_IMAGE_PIXELS = None
device = torch.device('cuda')
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='001', help='Path to the config file.')
parser.add_argument('--real_dataset_path', type=str, default='./data/ffhq-dataset/images/', help='dataset path')
parser.add_argument('--dataset_path', type=str, default='./data/stylegan2-generate-images/ims/', help='dataset path')
parser.add_argument('--label_path', type=str, default='./data/stylegan2-generate-images/seeds_pytorch_1.8.1.npy', help='laebl path')
parser.add_argument('--stylegan_model_path', type=str, default='./pixel2style2pixel/pretrained_models/psp_ffhq_encode.pt', help='pretrained stylegan2 model')
parser.add_argument('--arcface_model_path', type=str, default='./pretrained_models/backbone.pth', help='pretrained ArcFace model')
parser.add_argument('--parsing_model_path', type=str, default='./pretrained_models/79999_iter.pth', help='pretrained parsing model')
parser.add_argument('--log_path', type=str, default='./logs/', help='log file path')
parser.add_argument('--resume', action='store_true', help='resume from checkpoint')
parser.add_argument('--checkpoint', type=str, default='', help='checkpoint file path')
opts = parser.parse_args()
log_dir = os.path.join(opts.log_path, opts.config) + '/'
os.makedirs(log_dir, exist_ok=True)
logger = Logger(log_dir)
config = yaml.load(open('./configs/' + opts.config + '.yaml', 'r'), Loader=yaml.FullLoader)
batch_size = config['batch_size']
epochs = config['epochs']
iter_per_epoch = config['iter_per_epoch']
img_size = (config['resolution'], config['resolution'])
video_data_input = False
img_to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
img_to_tensor_car = transforms.Compose([
transforms.Resize((384, 512)),
transforms.Pad(padding=(0, 64, 0, 64)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# Initialize trainer
trainer = Trainer(config, opts)
trainer.initialize(opts.stylegan_model_path, opts.arcface_model_path, opts.parsing_model_path)
trainer.to(device)
noise_exemple = trainer.noise_inputs
train_data_split = 0.9 if 'train_split' not in config else config['train_split']
# Load synthetic dataset
dataset_A = MyDataSet(image_dir=opts.dataset_path, label_dir=opts.label_path, output_size=img_size, noise_in=noise_exemple, training_set=True, train_split=train_data_split)
loader_A = data.DataLoader(dataset_A, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
# Load real dataset
dataset_B = MyDataSet(image_dir=opts.real_dataset_path, label_dir=None, output_size=img_size, noise_in=noise_exemple, training_set=True, train_split=train_data_split)
loader_B = data.DataLoader(dataset_B, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
# Start Training
epoch_0 = 0
# check if checkpoint exist
if 'checkpoint.pth' in os.listdir(log_dir):
epoch_0 = trainer.load_checkpoint(os.path.join(log_dir, 'checkpoint.pth'))
if opts.resume:
epoch_0 = trainer.load_checkpoint(os.path.join(opts.log_path, opts.checkpoint))
torch.manual_seed(0)
os.makedirs(log_dir + 'validation/', exist_ok=True)
print("Start!")
for n_epoch in tqdm(range(epoch_0, epochs)):
iter_A = iter(loader_A)
iter_B = iter(loader_B)
iter_0 = n_epoch*iter_per_epoch
trainer.enc_opt.zero_grad()
for n_iter in range(iter_0, iter_0 + iter_per_epoch):
if opts.dataset_path is None:
z, noise = next(iter_A)
img_A = None
else:
z, img_A, noise = next(iter_A)
img_A = img_A.to(device)
z = z.to(device)
noise = [ee.to(device) for ee in noise]
w = trainer.mapping(z)
if 'fixed_noise' in config and config['fixed_noise']:
img_A, noise = None, None
img_B = None
if 'use_realimg' in config and config['use_realimg']:
try:
img_B = next(iter_B)
if img_B.size(0) != batch_size:
iter_B = iter(loader_B)
img_B = next(iter_B)
except StopIteration:
iter_B = iter(loader_B)
img_B = next(iter_B)
img_B = img_B.to(device)
trainer.update(w=w, img=img_A, noise=noise, real_img=img_B, n_iter=n_iter)
if (n_iter+1) % config['log_iter'] == 0:
trainer.log_loss(logger, n_iter, prefix='scripts')
if (n_iter+1) % config['image_save_iter'] == 0:
trainer.save_image(log_dir, n_epoch, n_iter, prefix='/scripts/', w=w, img=img_A, noise=noise)
trainer.save_image(log_dir, n_epoch, n_iter+1, prefix='/scripts/', w=w, img=img_B, noise=noise, training_mode=False)
trainer.enc_scheduler.step()
trainer.save_checkpoint(n_epoch, log_dir)
# Test the model on celeba hq dataset
with torch.no_grad():
trainer.enc.eval()
for i in range(10):
image_A = img_to_tensor(Image.open('./data/celeba_hq/%d.jpg' % i)).unsqueeze(0).to(device)
output = trainer.test(img=image_A)
out_img = torch.cat(output, 3)
utils.save_image(clip_img(out_img[:1]), log_dir + 'validation/' + 'epoch_' +str(n_epoch+1) + '_' + str(i) + '.jpg')
trainer.compute_loss(w=w, img=img_A, noise=noise, real_img=img_B)
trainer.log_loss(logger, n_iter, prefix='validation')
trainer.save_model(log_dir) |