newTryOn / models /Encoders.py
amanSethSmava
new commit
6d314be
raw
history blame
6.09 kB
import argparse
import clip
import torch
import torch.nn as nn
from torch.nn import Linear, LayerNorm, LeakyReLU, Sequential
from torchvision import transforms as T
from models.Net import FeatureEncoderMult, IBasicBlock, conv1x1
from models.stylegan2.model import PixelNorm
class ModulationModule(nn.Module):
def __init__(self, layernum, last=False, inp=512, middle=512):
super().__init__()
self.layernum = layernum
self.last = last
self.fc = Linear(512, 512)
self.norm = LayerNorm([self.layernum, 512], elementwise_affine=False)
self.gamma_function = Sequential(Linear(inp, middle), LayerNorm([middle]), LeakyReLU(), Linear(middle, 512))
self.beta_function = Sequential(Linear(inp, middle), LayerNorm([middle]), LeakyReLU(), Linear(middle, 512))
self.leakyrelu = LeakyReLU()
def forward(self, x, embedding):
x = self.fc(x)
x = self.norm(x)
gamma = self.gamma_function(embedding)
beta = self.beta_function(embedding)
out = x * (1 + gamma) + beta
if not self.last:
out = self.leakyrelu(out)
return out
class FeatureiResnet(nn.Module):
def __init__(self, blocks, inplanes=1024):
super().__init__()
self.res_blocks = {}
for n, block in enumerate(blocks, start=1):
planes, num_blocks = block
for k in range(1, num_blocks + 1):
downsample = None
if inplanes != planes:
downsample = nn.Sequential(conv1x1(inplanes, planes, 1), nn.BatchNorm2d(planes, eps=1e-05, ), )
self.res_blocks[f'res_block_{n}_{k}'] = IBasicBlock(inplanes, planes, 1, downsample, 1, 64, 1)
inplanes = planes
self.res_blocks = nn.ModuleDict(self.res_blocks)
def forward(self, x):
for module in self.res_blocks.values():
x = module(x)
return x
class RotateModel(nn.Module):
def __init__(self):
super().__init__()
self.pixelnorm = PixelNorm()
self.modulation_module_list = nn.ModuleList([ModulationModule(6, i == 4) for i in range(5)])
def forward(self, latent_from, latent_to):
dt_latent = self.pixelnorm(latent_from)
for modulation_module in self.modulation_module_list:
dt_latent = modulation_module(dt_latent, latent_to)
output = latent_from + 0.1 * dt_latent
return output
class ClipBlendingModel(nn.Module):
def __init__(self, clip_model="ViT-B/32"):
super().__init__()
self.pixelnorm = PixelNorm()
self.clip_model, _ = clip.load(clip_model, device="cuda")
self.transform = T.Compose(
[T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))])
self.face_pool = torch.nn.AdaptiveAvgPool2d((224, 224))
self.modulation_module_list = nn.ModuleList(
[ModulationModule(12, i == 4, inp=512 * 3, middle=1024) for i in range(5)]
)
for param in self.clip_model.parameters():
param.requires_grad = False
def get_image_embed(self, image_tensor):
resized_tensor = self.face_pool(image_tensor)
renormed_tensor = self.transform(resized_tensor * 0.5 + 0.5)
return self.clip_model.encode_image(renormed_tensor)
def forward(self, latent_face, latent_color, target_face, hair_color):
embed_face = self.get_image_embed(target_face).unsqueeze(1).expand(-1, 12, -1)
embed_color = self.get_image_embed(hair_color).unsqueeze(1).expand(-1, 12, -1)
latent_in = torch.cat((latent_color, embed_face, embed_color), dim=-1)
dt_latent = self.pixelnorm(latent_face)
for modulation_module in self.modulation_module_list:
dt_latent = modulation_module(dt_latent, latent_in)
output = latent_face + 0.1 * dt_latent
return output
class PostProcessModel(nn.Module):
def __init__(self):
super().__init__()
self.encoder_face = FeatureEncoderMult(fs_layers=[9], opts=argparse.Namespace(
**{'arcface_model_path': "pretrained_models/ArcFace/backbone_ir50.pth"}))
self.latent_avg = torch.load('pretrained_models/PostProcess/latent_avg.pt', map_location=torch.device('cuda'))
self.to_feature = FeatureiResnet([[1024, 2], [768, 2], [512, 2]])
self.to_latent_1 = nn.ModuleList([ModulationModule(18, i == 4) for i in range(5)])
self.to_latent_2 = nn.ModuleList([ModulationModule(18, i == 4) for i in range(5)])
self.pixelnorm = PixelNorm()
def forward(self, source, target):
s_face, [f_face] = self.encoder_face(source)
s_hair, [f_hair] = self.encoder_face(target)
dt_latent_face = self.pixelnorm(s_face)
dt_latent_hair = self.pixelnorm(s_hair)
for mod_module in self.to_latent_1:
dt_latent_face = mod_module(dt_latent_face, s_hair)
for mod_module in self.to_latent_2:
dt_latent_hair = mod_module(dt_latent_hair, s_face)
finall_s = self.latent_avg + 0.1 * (dt_latent_face + dt_latent_hair)
cat_f = torch.cat((f_face, f_hair), dim=1)
finall_f = self.to_feature(cat_f)
return finall_s, finall_f
class ClipModel(nn.Module):
def __init__(self):
super().__init__()
self.clip_model, _ = clip.load("ViT-B/32", device="cuda")
self.transform = T.Compose(
[T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))]
)
self.face_pool = torch.nn.AdaptiveAvgPool2d((224, 224))
for param in self.clip_model.parameters():
param.requires_grad = False
def forward(self, image_tensor):
if not image_tensor.is_cuda:
image_tensor = image_tensor.to("cuda")
if image_tensor.dtype == torch.uint8:
image_tensor = image_tensor / 255
resized_tensor = self.face_pool(image_tensor)
renormed_tensor = self.transform(resized_tensor)
return self.clip_model.encode_image(renormed_tensor)