Spaces:
Build error
Build error
File size: 6,094 Bytes
6d314be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import argparse
import clip
import torch
import torch.nn as nn
from torch.nn import Linear, LayerNorm, LeakyReLU, Sequential
from torchvision import transforms as T
from models.Net import FeatureEncoderMult, IBasicBlock, conv1x1
from models.stylegan2.model import PixelNorm
class ModulationModule(nn.Module):
def __init__(self, layernum, last=False, inp=512, middle=512):
super().__init__()
self.layernum = layernum
self.last = last
self.fc = Linear(512, 512)
self.norm = LayerNorm([self.layernum, 512], elementwise_affine=False)
self.gamma_function = Sequential(Linear(inp, middle), LayerNorm([middle]), LeakyReLU(), Linear(middle, 512))
self.beta_function = Sequential(Linear(inp, middle), LayerNorm([middle]), LeakyReLU(), Linear(middle, 512))
self.leakyrelu = LeakyReLU()
def forward(self, x, embedding):
x = self.fc(x)
x = self.norm(x)
gamma = self.gamma_function(embedding)
beta = self.beta_function(embedding)
out = x * (1 + gamma) + beta
if not self.last:
out = self.leakyrelu(out)
return out
class FeatureiResnet(nn.Module):
def __init__(self, blocks, inplanes=1024):
super().__init__()
self.res_blocks = {}
for n, block in enumerate(blocks, start=1):
planes, num_blocks = block
for k in range(1, num_blocks + 1):
downsample = None
if inplanes != planes:
downsample = nn.Sequential(conv1x1(inplanes, planes, 1), nn.BatchNorm2d(planes, eps=1e-05, ), )
self.res_blocks[f'res_block_{n}_{k}'] = IBasicBlock(inplanes, planes, 1, downsample, 1, 64, 1)
inplanes = planes
self.res_blocks = nn.ModuleDict(self.res_blocks)
def forward(self, x):
for module in self.res_blocks.values():
x = module(x)
return x
class RotateModel(nn.Module):
def __init__(self):
super().__init__()
self.pixelnorm = PixelNorm()
self.modulation_module_list = nn.ModuleList([ModulationModule(6, i == 4) for i in range(5)])
def forward(self, latent_from, latent_to):
dt_latent = self.pixelnorm(latent_from)
for modulation_module in self.modulation_module_list:
dt_latent = modulation_module(dt_latent, latent_to)
output = latent_from + 0.1 * dt_latent
return output
class ClipBlendingModel(nn.Module):
def __init__(self, clip_model="ViT-B/32"):
super().__init__()
self.pixelnorm = PixelNorm()
self.clip_model, _ = clip.load(clip_model, device="cuda")
self.transform = T.Compose(
[T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))])
self.face_pool = torch.nn.AdaptiveAvgPool2d((224, 224))
self.modulation_module_list = nn.ModuleList(
[ModulationModule(12, i == 4, inp=512 * 3, middle=1024) for i in range(5)]
)
for param in self.clip_model.parameters():
param.requires_grad = False
def get_image_embed(self, image_tensor):
resized_tensor = self.face_pool(image_tensor)
renormed_tensor = self.transform(resized_tensor * 0.5 + 0.5)
return self.clip_model.encode_image(renormed_tensor)
def forward(self, latent_face, latent_color, target_face, hair_color):
embed_face = self.get_image_embed(target_face).unsqueeze(1).expand(-1, 12, -1)
embed_color = self.get_image_embed(hair_color).unsqueeze(1).expand(-1, 12, -1)
latent_in = torch.cat((latent_color, embed_face, embed_color), dim=-1)
dt_latent = self.pixelnorm(latent_face)
for modulation_module in self.modulation_module_list:
dt_latent = modulation_module(dt_latent, latent_in)
output = latent_face + 0.1 * dt_latent
return output
class PostProcessModel(nn.Module):
def __init__(self):
super().__init__()
self.encoder_face = FeatureEncoderMult(fs_layers=[9], opts=argparse.Namespace(
**{'arcface_model_path': "pretrained_models/ArcFace/backbone_ir50.pth"}))
self.latent_avg = torch.load('pretrained_models/PostProcess/latent_avg.pt', map_location=torch.device('cuda'))
self.to_feature = FeatureiResnet([[1024, 2], [768, 2], [512, 2]])
self.to_latent_1 = nn.ModuleList([ModulationModule(18, i == 4) for i in range(5)])
self.to_latent_2 = nn.ModuleList([ModulationModule(18, i == 4) for i in range(5)])
self.pixelnorm = PixelNorm()
def forward(self, source, target):
s_face, [f_face] = self.encoder_face(source)
s_hair, [f_hair] = self.encoder_face(target)
dt_latent_face = self.pixelnorm(s_face)
dt_latent_hair = self.pixelnorm(s_hair)
for mod_module in self.to_latent_1:
dt_latent_face = mod_module(dt_latent_face, s_hair)
for mod_module in self.to_latent_2:
dt_latent_hair = mod_module(dt_latent_hair, s_face)
finall_s = self.latent_avg + 0.1 * (dt_latent_face + dt_latent_hair)
cat_f = torch.cat((f_face, f_hair), dim=1)
finall_f = self.to_feature(cat_f)
return finall_s, finall_f
class ClipModel(nn.Module):
def __init__(self):
super().__init__()
self.clip_model, _ = clip.load("ViT-B/32", device="cuda")
self.transform = T.Compose(
[T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))]
)
self.face_pool = torch.nn.AdaptiveAvgPool2d((224, 224))
for param in self.clip_model.parameters():
param.requires_grad = False
def forward(self, image_tensor):
if not image_tensor.is_cuda:
image_tensor = image_tensor.to("cuda")
if image_tensor.dtype == torch.uint8:
image_tensor = image_tensor / 255
resized_tensor = self.face_pool(image_tensor)
renormed_tensor = self.transform(resized_tensor)
return self.clip_model.encode_image(renormed_tensor)
|