bug-fixer / bug_detector.py
venky2k1
Final working bug fixer with fixed detection and suggestion
eef3533
raw
history blame contribute delete
734 Bytes
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Load pre-trained CodeBERT model
model = AutoModelForSequenceClassification.from_pretrained("microsoft/codebert-base", num_labels=2)
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
def detect_bug(code):
inputs = tokenizer(code, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
return "buggy" if probabilities[0][1] > probabilities[0][0] else "correct"
# Optional test
if __name__ == "__main__":
sample = "def multiply(a, b): return a + b"
print(detect_bug(sample))
#detects if there's a bug in code