Spaces:
Running
Running
File size: 734 Bytes
304c5a2 d57024f 304c5a2 4f36dfb 304c5a2 d57024f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
# Load pre-trained CodeBERT model
model = AutoModelForSequenceClassification.from_pretrained("microsoft/codebert-base", num_labels=2)
tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
def detect_bug(code):
inputs = tokenizer(code, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
return "buggy" if probabilities[0][1] > probabilities[0][0] else "correct"
# Optional test
if __name__ == "__main__":
sample = "def multiply(a, b): return a + b"
print(detect_bug(sample))
#detects if there's a bug in code
|