import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer # Load pre-trained CodeBERT model model = AutoModelForSequenceClassification.from_pretrained("microsoft/codebert-base", num_labels=2) tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base") def detect_bug(code): inputs = tokenizer(code, return_tensors="pt", truncation=True, padding=True) outputs = model(**inputs) probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) return "buggy" if probabilities[0][1] > probabilities[0][0] else "correct" # Optional test if __name__ == "__main__": sample = "def multiply(a, b): return a + b" print(detect_bug(sample)) #detects if there's a bug in code