ajsbsd's picture
Update app.py
dbe4bd1 verified
raw
history blame
17.5 kB
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
from PIL import Image, PngImagePlugin
from datetime import datetime
import os
import gc
import time
import spaces
from typing import Optional, Tuple
from huggingface_hub import hf_hub_download
import tempfile
import random
# Global pipeline variables
txt2img_pipe = None
img2img_pipe = None
device = "cuda" if torch.cuda.is_available() else "cpu"
# Hugging Face model configuration
MODEL_REPO = "ajsbsd/CyberRealistic-Pony"
MODEL_FILENAME = "cyberrealisticPony_v110.safetensors"
model_id = f"{MODEL_REPO}/{MODEL_FILENAME}"
# Generation configuration for metadata
generation_config = {
"vae": "SDXL VAE",
"sampler": "DPM++ 2M Karras",
"steps": 20
}
def clear_memory():
"""Clear GPU memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
def add_metadata_and_save(image: Image.Image, prompt: str, negative_prompt: str, seed: int, steps: int, guidance: float, strength: Optional[float] = None):
"""Embed generation metadata into a PNG and save it."""
# Create temporary file with unique name
temp_path = tempfile.mktemp(suffix=".png")
meta = PngImagePlugin.PngInfo()
meta.add_text("Prompt", prompt)
meta.add_text("NegativePrompt", negative_prompt)
meta.add_text("Model", model_id)
meta.add_text("VAE", generation_config["vae"])
meta.add_text("Sampler", generation_config["sampler"])
meta.add_text("Steps", str(steps))
meta.add_text("CFG_Scale", str(guidance))
if strength is not None:
meta.add_text("Strength", str(strength))
meta.add_text("Seed", str(seed))
meta.add_text("Date", datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
image.save(temp_path, "PNG", pnginfo=meta)
return temp_path
def load_models():
"""Load both text2img and img2img pipelines optimized for Spaces"""
global txt2img_pipe, img2img_pipe
try:
print("Loading CyberRealistic Pony models...")
# Download model file using huggingface_hub
print(f"Downloading model from {MODEL_REPO}...")
model_path = hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILENAME,
cache_dir="/tmp/hf_cache" # Use tmp for Spaces
)
print(f"Model downloaded to: {model_path}")
# Load Text2Img pipeline
if txt2img_pipe is None:
txt2img_pipe = StableDiffusionXLPipeline.from_single_file(
model_path,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
use_safetensors=True,
variant="fp16" if device == "cuda" else None
)
# Aggressive memory optimizations for Spaces
txt2img_pipe.enable_attention_slicing()
txt2img_pipe.enable_vae_slicing()
if device == "cuda":
txt2img_pipe.enable_model_cpu_offload()
txt2img_pipe.enable_sequential_cpu_offload()
else:
txt2img_pipe = txt2img_pipe.to(device)
# Share components for Img2Img to save memory
if img2img_pipe is None:
img2img_pipe = StableDiffusionXLImg2ImgPipeline(
vae=txt2img_pipe.vae,
text_encoder=txt2img_pipe.text_encoder,
text_encoder_2=txt2img_pipe.text_encoder_2,
tokenizer=txt2img_pipe.tokenizer,
tokenizer_2=txt2img_pipe.tokenizer_2,
unet=txt2img_pipe.unet,
scheduler=txt2img_pipe.scheduler,
)
# Same optimizations
img2img_pipe.enable_attention_slicing()
img2img_pipe.enable_vae_slicing()
if device == "cuda":
img2img_pipe.enable_model_cpu_offload()
img2img_pipe.enable_sequential_cpu_offload()
print("Models loaded successfully!")
return True
except Exception as e:
print(f"Error loading models: {e}")
return False
def enhance_prompt(prompt: str, add_quality_tags: bool = True) -> str:
"""Enhance prompt with Pony-style tags"""
if not prompt.strip():
return prompt
if prompt.startswith("score_") or not add_quality_tags:
return prompt
quality_tags = "score_9, score_8_up, score_7_up, masterpiece, best quality, highly detailed"
return f"{quality_tags}, {prompt}"
def validate_dimensions(width: int, height: int) -> Tuple[int, int]:
"""Ensure dimensions are valid for SDXL"""
width = ((width + 63) // 64) * 64
height = ((height + 63) // 64) * 64
# More conservative limits for Spaces
width = max(512, min(1024, width))
height = max(512, min(1024, height))
return width, height
def format_status_with_metadata(generation_time: float, width: int, height: int, prompt: str, negative_prompt: str, seed: int, steps: int, guidance: float, strength: Optional[float] = None):
"""Format status message with generation metadata"""
status_parts = [
f"βœ… Generated in {generation_time:.1f}s ({width}Γ—{height})",
f"🎯 Prompt: {prompt[:50]}..." if len(prompt) > 50 else f"🎯 Prompt: {prompt}",
f"🚫 Negative: {negative_prompt[:30]}..." if negative_prompt and len(negative_prompt) > 30 else f"🚫 Negative: {negative_prompt or 'None'}",
f"🎲 Seed: {seed}",
f"πŸ“ Steps: {steps}",
f"πŸŽ›οΈ CFG: {guidance}"
]
if strength is not None:
status_parts.append(f"πŸ’ͺ Strength: {strength}")
return "\n".join(status_parts)
@spaces.GPU(duration=60) # GPU decorator for Spaces
def generate_txt2img(prompt, negative_prompt, num_steps, guidance_scale, width, height, seed, add_quality_tags):
"""Generate image from text prompt with Spaces GPU support"""
global txt2img_pipe
if not prompt.strip():
return None, "Please enter a prompt"
# Lazy load models
if txt2img_pipe is None:
if not load_models():
return None, "Failed to load models. Please try again."
try:
clear_memory()
# Validate dimensions
width, height = validate_dimensions(width, height)
# Handle seed
if seed == -1:
seed = random.randint(0, 2147483647)
# Set seed
generator = torch.Generator(device=device).manual_seed(int(seed))
# Enhance prompt
enhanced_prompt = enhance_prompt(prompt, add_quality_tags)
print(f"Generating: {enhanced_prompt[:100]}...")
start_time = time.time()
# Generate with lower memory usage
with torch.no_grad():
result = txt2img_pipe(
prompt=enhanced_prompt,
negative_prompt=negative_prompt or "",
num_inference_steps=min(int(num_steps), 30), # Limit steps for Spaces
guidance_scale=float(guidance_scale),
width=width,
height=height,
generator=generator
)
generation_time = time.time() - start_time
# Save with metadata - returns file path
png_path = add_metadata_and_save(
result.images[0], enhanced_prompt, negative_prompt or "",
seed, num_steps, guidance_scale
)
# Format status with metadata
status = format_status_with_metadata(
generation_time, width, height, enhanced_prompt,
negative_prompt or "", seed, num_steps, guidance_scale
)
return png_path, status
except Exception as e:
return None, f"Generation failed: {str(e)}"
finally:
clear_memory()
@spaces.GPU(duration=60) # GPU decorator for Spaces
def generate_img2img(input_image, prompt, negative_prompt, num_steps, guidance_scale, strength, seed, add_quality_tags):
"""Generate image from input image + text prompt with Spaces GPU support"""
global img2img_pipe
if input_image is None:
return None, "Please upload an input image"
if not prompt.strip():
return None, "Please enter a prompt"
# Lazy load models
if img2img_pipe is None:
if not load_models():
return None, "Failed to load models. Please try again."
try:
clear_memory()
# Handle seed
if seed == -1:
seed = random.randint(0, 2147483647)
# Set seed
generator = torch.Generator(device=device).manual_seed(int(seed))
# Enhance prompt
enhanced_prompt = enhance_prompt(prompt, add_quality_tags)
# Process input image
if isinstance(input_image, Image.Image):
if input_image.mode != 'RGB':
input_image = input_image.convert('RGB')
# Conservative resize for Spaces
max_size = 768
input_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
w, h = input_image.size
w, h = validate_dimensions(w, h)
input_image = input_image.resize((w, h), Image.Resampling.LANCZOS)
print(f"Transforming: {enhanced_prompt[:100]}...")
start_time = time.time()
with torch.no_grad():
result = img2img_pipe(
prompt=enhanced_prompt,
negative_prompt=negative_prompt or "",
image=input_image,
num_inference_steps=min(int(num_steps), 30), # Limit steps
guidance_scale=float(guidance_scale),
strength=float(strength),
generator=generator
)
generation_time = time.time() - start_time
# Save with metadata - returns file path
png_path = add_metadata_and_save(
result.images[0], enhanced_prompt, negative_prompt or "",
seed, num_steps, guidance_scale, strength
)
# Format status with metadata
status = format_status_with_metadata(
generation_time, w, h, enhanced_prompt,
negative_prompt or "", seed, num_steps, guidance_scale, strength
)
return png_path, status
except Exception as e:
return None, f"Transformation failed: {str(e)}"
finally:
clear_memory()
# Example prompts for inspiration
EXAMPLE_PROMPTS = [
"beautiful anime girl with long flowing hair, cherry blossoms, soft lighting",
"cyberpunk cityscape at night, neon lights, rain reflections, detailed architecture",
"majestic dragon flying over mountains, fantasy landscape, dramatic clouds",
"cute anthropomorphic fox character, forest background, magical atmosphere",
"elegant woman in Victorian dress, portrait, ornate background, vintage style",
"futuristic robot with glowing eyes, metallic surface, sci-fi environment",
"mystical unicorn in enchanted forest, rainbow mane, sparkles, ethereal lighting",
"steampunk airship floating in sky, gears and brass, adventure scene"
]
def set_example_prompt():
"""Return a random example prompt"""
return random.choice(EXAMPLE_PROMPTS)
# Simplified negative prompt for better performance
DEFAULT_NEGATIVE = """
(low quality:1.3), (worst quality:1.3), (bad quality:1.2), blurry, noisy, ugly, deformed,
(text, watermark:1.4), (extra limbs:1.3), (bad hands:1.3), (bad anatomy:1.2)
"""
# Gradio interface optimized for Spaces
with gr.Blocks(
title="CyberRealistic Pony Generator",
theme=gr.themes.Soft()
) as demo:
gr.Markdown("""
# 🎨 CyberRealistic Pony Image Generator
Generate high-quality images using the CyberRealistic Pony SDXL model.
⚠️ **Note**: First generation may take longer as the model loads. GPU time is limited on Spaces.
πŸ“‹ **Metadata**: All generated images include embedded metadata (prompt, settings, seed, etc.)
""")
with gr.Tabs():
with gr.TabItem("🎨 Text to Image"):
with gr.Row():
with gr.Column():
with gr.Row():
txt2img_prompt = gr.Textbox(
label="Prompt",
placeholder="beautiful landscape, mountains, sunset",
lines=2,
scale=4
)
txt2img_example_btn = gr.Button("🎲 Random Example", scale=1)
with gr.Accordion("Advanced Settings", open=False):
txt2img_negative = gr.Textbox(
label="Negative Prompt",
value=DEFAULT_NEGATIVE,
lines=2
)
txt2img_quality_tags = gr.Checkbox(
label="Add Quality Tags",
value=True
)
with gr.Row():
txt2img_steps = gr.Slider(10, 30, 20, step=1, label="Steps")
txt2img_guidance = gr.Slider(1.0, 15.0, 7.5, step=0.5, label="Guidance")
with gr.Row():
txt2img_width = gr.Slider(512, 1024, 768, step=64, label="Width")
txt2img_height = gr.Slider(512, 1024, 768, step=64, label="Height")
txt2img_seed = gr.Slider(
minimum=-1, maximum=2147483647, value=-1, step=1,
label="Seed (-1 for random)"
)
txt2img_btn = gr.Button("🎨 Generate", variant="primary", size="lg")
with gr.Column():
txt2img_output = gr.File(label="Generated PNG with Metadata", file_types=[".png"])
txt2img_status = gr.Textbox(label="Generation Info", interactive=False, lines=6)
with gr.TabItem("πŸ–ΌοΈ Image to Image"):
with gr.Row():
with gr.Column():
img2img_input = gr.Image(label="Input Image", type="pil", height=250)
with gr.Row():
img2img_prompt = gr.Textbox(
label="Prompt",
placeholder="digital painting style, vibrant colors",
lines=2,
scale=4
)
img2img_example_btn = gr.Button("🎲 Random Example", scale=1)
with gr.Accordion("Advanced Settings", open=False):
img2img_negative = gr.Textbox(
label="Negative Prompt",
value=DEFAULT_NEGATIVE,
lines=2
)
img2img_quality_tags = gr.Checkbox(
label="Add Quality Tags",
value=True
)
with gr.Row():
img2img_steps = gr.Slider(10, 30, 20, step=1, label="Steps")
img2img_guidance = gr.Slider(1.0, 15.0, 7.5, step=0.5, label="Guidance")
img2img_strength = gr.Slider(
0.1, 1.0, 0.75, step=0.05,
label="Strength (Higher = more creative)"
)
img2img_seed = gr.Slider(
minimum=-1, maximum=2147483647, value=-1, step=1,
label="Seed (-1 for random)"
)
img2img_btn = gr.Button("πŸ–ΌοΈ Transform", variant="primary", size="lg")
with gr.Column():
img2img_output = gr.File(label="Generated PNG with Metadata", file_types=[".png"])
img2img_status = gr.Textbox(label="Generation Info", interactive=False, lines=6)
# Event handlers
txt2img_btn.click(
fn=generate_txt2img,
inputs=[txt2img_prompt, txt2img_negative, txt2img_steps, txt2img_guidance,
txt2img_width, txt2img_height, txt2img_seed, txt2img_quality_tags],
outputs=[txt2img_output, txt2img_status]
)
img2img_btn.click(
fn=generate_img2img,
inputs=[img2img_input, img2img_prompt, img2img_negative, img2img_steps, img2img_guidance,
img2img_strength, img2img_seed, img2img_quality_tags],
outputs=[img2img_output, img2img_status]
)
# Example prompt buttons
txt2img_example_btn.click(
fn=set_example_prompt,
outputs=[txt2img_prompt]
)
img2img_example_btn.click(
fn=set_example_prompt,
outputs=[img2img_prompt]
)
print(f"πŸš€ CyberRealistic Pony Generator initialized on {device}")
if __name__ == "__main__":
demo.launch()