import gradio as gr import torch from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline from PIL import Image, PngImagePlugin from datetime import datetime import os import gc import time import spaces from typing import Optional, Tuple from huggingface_hub import hf_hub_download import tempfile import random # Global pipeline variables txt2img_pipe = None img2img_pipe = None device = "cuda" if torch.cuda.is_available() else "cpu" # Hugging Face model configuration MODEL_REPO = "ajsbsd/CyberRealistic-Pony" MODEL_FILENAME = "cyberrealisticPony_v110.safetensors" model_id = f"{MODEL_REPO}/{MODEL_FILENAME}" # Generation configuration for metadata generation_config = { "vae": "SDXL VAE", "sampler": "DPM++ 2M Karras", "steps": 20 } def clear_memory(): """Clear GPU memory""" if torch.cuda.is_available(): torch.cuda.empty_cache() gc.collect() def add_metadata_and_save(image: Image.Image, prompt: str, negative_prompt: str, seed: int, steps: int, guidance: float, strength: Optional[float] = None): """Embed generation metadata into a PNG and save it.""" # Create temporary file with unique name temp_path = tempfile.mktemp(suffix=".png") meta = PngImagePlugin.PngInfo() meta.add_text("Prompt", prompt) meta.add_text("NegativePrompt", negative_prompt) meta.add_text("Model", model_id) meta.add_text("VAE", generation_config["vae"]) meta.add_text("Sampler", generation_config["sampler"]) meta.add_text("Steps", str(steps)) meta.add_text("CFG_Scale", str(guidance)) if strength is not None: meta.add_text("Strength", str(strength)) meta.add_text("Seed", str(seed)) meta.add_text("Date", datetime.now().strftime("%Y-%m-%d %H:%M:%S")) image.save(temp_path, "PNG", pnginfo=meta) return temp_path def load_models(): """Load both text2img and img2img pipelines optimized for Spaces""" global txt2img_pipe, img2img_pipe try: print("Loading CyberRealistic Pony models...") # Download model file using huggingface_hub print(f"Downloading model from {MODEL_REPO}...") model_path = hf_hub_download( repo_id=MODEL_REPO, filename=MODEL_FILENAME, cache_dir="/tmp/hf_cache" # Use tmp for Spaces ) print(f"Model downloaded to: {model_path}") # Load Text2Img pipeline if txt2img_pipe is None: txt2img_pipe = StableDiffusionXLPipeline.from_single_file( model_path, torch_dtype=torch.float16 if device == "cuda" else torch.float32, use_safetensors=True, variant="fp16" if device == "cuda" else None ) # Aggressive memory optimizations for Spaces txt2img_pipe.enable_attention_slicing() txt2img_pipe.enable_vae_slicing() if device == "cuda": txt2img_pipe.enable_model_cpu_offload() txt2img_pipe.enable_sequential_cpu_offload() else: txt2img_pipe = txt2img_pipe.to(device) # Share components for Img2Img to save memory if img2img_pipe is None: img2img_pipe = StableDiffusionXLImg2ImgPipeline( vae=txt2img_pipe.vae, text_encoder=txt2img_pipe.text_encoder, text_encoder_2=txt2img_pipe.text_encoder_2, tokenizer=txt2img_pipe.tokenizer, tokenizer_2=txt2img_pipe.tokenizer_2, unet=txt2img_pipe.unet, scheduler=txt2img_pipe.scheduler, ) # Same optimizations img2img_pipe.enable_attention_slicing() img2img_pipe.enable_vae_slicing() if device == "cuda": img2img_pipe.enable_model_cpu_offload() img2img_pipe.enable_sequential_cpu_offload() print("Models loaded successfully!") return True except Exception as e: print(f"Error loading models: {e}") return False def enhance_prompt(prompt: str, add_quality_tags: bool = True) -> str: """Enhance prompt with Pony-style tags""" if not prompt.strip(): return prompt if prompt.startswith("score_") or not add_quality_tags: return prompt quality_tags = "score_9, score_8_up, score_7_up, masterpiece, best quality, highly detailed" return f"{quality_tags}, {prompt}" def validate_dimensions(width: int, height: int) -> Tuple[int, int]: """Ensure dimensions are valid for SDXL""" width = ((width + 63) // 64) * 64 height = ((height + 63) // 64) * 64 # More conservative limits for Spaces width = max(512, min(1024, width)) height = max(512, min(1024, height)) return width, height def format_status_with_metadata(generation_time: float, width: int, height: int, prompt: str, negative_prompt: str, seed: int, steps: int, guidance: float, strength: Optional[float] = None): """Format status message with generation metadata""" status_parts = [ f"✅ Generated in {generation_time:.1f}s ({width}×{height})", f"🎯 Prompt: {prompt[:50]}..." if len(prompt) > 50 else f"🎯 Prompt: {prompt}", f"🚫 Negative: {negative_prompt[:30]}..." if negative_prompt and len(negative_prompt) > 30 else f"🚫 Negative: {negative_prompt or 'None'}", f"🎲 Seed: {seed}", f"📏 Steps: {steps}", f"🎛️ CFG: {guidance}" ] if strength is not None: status_parts.append(f"💪 Strength: {strength}") return "\n".join(status_parts) @spaces.GPU(duration=60) # GPU decorator for Spaces def generate_txt2img(prompt, negative_prompt, num_steps, guidance_scale, width, height, seed, add_quality_tags): """Generate image from text prompt with Spaces GPU support""" global txt2img_pipe if not prompt.strip(): return None, "Please enter a prompt" # Lazy load models if txt2img_pipe is None: if not load_models(): return None, "Failed to load models. Please try again." try: clear_memory() # Validate dimensions width, height = validate_dimensions(width, height) # Handle seed if seed == -1: seed = random.randint(0, 2147483647) # Set seed generator = torch.Generator(device=device).manual_seed(int(seed)) # Enhance prompt enhanced_prompt = enhance_prompt(prompt, add_quality_tags) print(f"Generating: {enhanced_prompt[:100]}...") start_time = time.time() # Generate with lower memory usage with torch.no_grad(): result = txt2img_pipe( prompt=enhanced_prompt, negative_prompt=negative_prompt or "", num_inference_steps=min(int(num_steps), 30), # Limit steps for Spaces guidance_scale=float(guidance_scale), width=width, height=height, generator=generator ) generation_time = time.time() - start_time # Save with metadata - returns file path png_path = add_metadata_and_save( result.images[0], enhanced_prompt, negative_prompt or "", seed, num_steps, guidance_scale ) # Format status with metadata status = format_status_with_metadata( generation_time, width, height, enhanced_prompt, negative_prompt or "", seed, num_steps, guidance_scale ) return png_path, status except Exception as e: return None, f"Generation failed: {str(e)}" finally: clear_memory() @spaces.GPU(duration=60) # GPU decorator for Spaces def generate_img2img(input_image, prompt, negative_prompt, num_steps, guidance_scale, strength, seed, add_quality_tags): """Generate image from input image + text prompt with Spaces GPU support""" global img2img_pipe if input_image is None: return None, "Please upload an input image" if not prompt.strip(): return None, "Please enter a prompt" # Lazy load models if img2img_pipe is None: if not load_models(): return None, "Failed to load models. Please try again." try: clear_memory() # Handle seed if seed == -1: seed = random.randint(0, 2147483647) # Set seed generator = torch.Generator(device=device).manual_seed(int(seed)) # Enhance prompt enhanced_prompt = enhance_prompt(prompt, add_quality_tags) # Process input image if isinstance(input_image, Image.Image): if input_image.mode != 'RGB': input_image = input_image.convert('RGB') # Conservative resize for Spaces max_size = 768 input_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS) w, h = input_image.size w, h = validate_dimensions(w, h) input_image = input_image.resize((w, h), Image.Resampling.LANCZOS) print(f"Transforming: {enhanced_prompt[:100]}...") start_time = time.time() with torch.no_grad(): result = img2img_pipe( prompt=enhanced_prompt, negative_prompt=negative_prompt or "", image=input_image, num_inference_steps=min(int(num_steps), 30), # Limit steps guidance_scale=float(guidance_scale), strength=float(strength), generator=generator ) generation_time = time.time() - start_time # Save with metadata - returns file path png_path = add_metadata_and_save( result.images[0], enhanced_prompt, negative_prompt or "", seed, num_steps, guidance_scale, strength ) # Format status with metadata status = format_status_with_metadata( generation_time, w, h, enhanced_prompt, negative_prompt or "", seed, num_steps, guidance_scale, strength ) return png_path, status except Exception as e: return None, f"Transformation failed: {str(e)}" finally: clear_memory() # Example prompts for inspiration EXAMPLE_PROMPTS = [ "beautiful anime girl with long flowing hair, cherry blossoms, soft lighting", "cyberpunk cityscape at night, neon lights, rain reflections, detailed architecture", "majestic dragon flying over mountains, fantasy landscape, dramatic clouds", "cute anthropomorphic fox character, forest background, magical atmosphere", "elegant woman in Victorian dress, portrait, ornate background, vintage style", "futuristic robot with glowing eyes, metallic surface, sci-fi environment", "mystical unicorn in enchanted forest, rainbow mane, sparkles, ethereal lighting", "steampunk airship floating in sky, gears and brass, adventure scene" ] def set_example_prompt(): """Return a random example prompt""" return random.choice(EXAMPLE_PROMPTS) # Simplified negative prompt for better performance DEFAULT_NEGATIVE = """ (low quality:1.3), (worst quality:1.3), (bad quality:1.2), blurry, noisy, ugly, deformed, (text, watermark:1.4), (extra limbs:1.3), (bad hands:1.3), (bad anatomy:1.2) """ # Gradio interface optimized for Spaces with gr.Blocks( title="CyberRealistic Pony Generator", theme=gr.themes.Soft() ) as demo: gr.Markdown(""" # 🎨 CyberRealistic Pony Image Generator Generate high-quality images using the CyberRealistic Pony SDXL model. ⚠️ **Note**: First generation may take longer as the model loads. GPU time is limited on Spaces. 📋 **Metadata**: All generated images include embedded metadata (prompt, settings, seed, etc.) """) with gr.Tabs(): with gr.TabItem("🎨 Text to Image"): with gr.Row(): with gr.Column(): with gr.Row(): txt2img_prompt = gr.Textbox( label="Prompt", placeholder="beautiful landscape, mountains, sunset", lines=2, scale=4 ) txt2img_example_btn = gr.Button("🎲 Random Example", scale=1) with gr.Accordion("Advanced Settings", open=False): txt2img_negative = gr.Textbox( label="Negative Prompt", value=DEFAULT_NEGATIVE, lines=2 ) txt2img_quality_tags = gr.Checkbox( label="Add Quality Tags", value=True ) with gr.Row(): txt2img_steps = gr.Slider(10, 30, 20, step=1, label="Steps") txt2img_guidance = gr.Slider(1.0, 15.0, 7.5, step=0.5, label="Guidance") with gr.Row(): txt2img_width = gr.Slider(512, 1024, 768, step=64, label="Width") txt2img_height = gr.Slider(512, 1024, 768, step=64, label="Height") txt2img_seed = gr.Slider( minimum=-1, maximum=2147483647, value=-1, step=1, label="Seed (-1 for random)" ) txt2img_btn = gr.Button("🎨 Generate", variant="primary", size="lg") with gr.Column(): txt2img_output = gr.File(label="Generated PNG with Metadata", file_types=[".png"]) txt2img_status = gr.Textbox(label="Generation Info", interactive=False, lines=6) with gr.TabItem("🖼️ Image to Image"): with gr.Row(): with gr.Column(): img2img_input = gr.Image(label="Input Image", type="pil", height=250) with gr.Row(): img2img_prompt = gr.Textbox( label="Prompt", placeholder="digital painting style, vibrant colors", lines=2, scale=4 ) img2img_example_btn = gr.Button("🎲 Random Example", scale=1) with gr.Accordion("Advanced Settings", open=False): img2img_negative = gr.Textbox( label="Negative Prompt", value=DEFAULT_NEGATIVE, lines=2 ) img2img_quality_tags = gr.Checkbox( label="Add Quality Tags", value=True ) with gr.Row(): img2img_steps = gr.Slider(10, 30, 20, step=1, label="Steps") img2img_guidance = gr.Slider(1.0, 15.0, 7.5, step=0.5, label="Guidance") img2img_strength = gr.Slider( 0.1, 1.0, 0.75, step=0.05, label="Strength (Higher = more creative)" ) img2img_seed = gr.Slider( minimum=-1, maximum=2147483647, value=-1, step=1, label="Seed (-1 for random)" ) img2img_btn = gr.Button("🖼️ Transform", variant="primary", size="lg") with gr.Column(): img2img_output = gr.File(label="Generated PNG with Metadata", file_types=[".png"]) img2img_status = gr.Textbox(label="Generation Info", interactive=False, lines=6) # Event handlers txt2img_btn.click( fn=generate_txt2img, inputs=[txt2img_prompt, txt2img_negative, txt2img_steps, txt2img_guidance, txt2img_width, txt2img_height, txt2img_seed, txt2img_quality_tags], outputs=[txt2img_output, txt2img_status] ) img2img_btn.click( fn=generate_img2img, inputs=[img2img_input, img2img_prompt, img2img_negative, img2img_steps, img2img_guidance, img2img_strength, img2img_seed, img2img_quality_tags], outputs=[img2img_output, img2img_status] ) # Example prompt buttons txt2img_example_btn.click( fn=set_example_prompt, outputs=[txt2img_prompt] ) img2img_example_btn.click( fn=set_example_prompt, outputs=[img2img_prompt] ) print(f"🚀 CyberRealistic Pony Generator initialized on {device}") if __name__ == "__main__": demo.launch()