Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,530 Bytes
1ebd84a c02b5d2 1ebd84a 5cbe56c 1ebd84a c02b5d2 1ebd84a c02b5d2 1ebd84a dbe4bd1 c02b5d2 dbe4bd1 c02b5d2 dbe4bd1 c02b5d2 1ebd84a 5cbe56c 1ebd84a 5cbe56c 4858646 5cbe56c 1ebd84a 4858646 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a c02b5d2 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a c02b5d2 5cbe56c c02b5d2 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a c02b5d2 dbe4bd1 c02b5d2 1ebd84a dbe4bd1 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a c02b5d2 5cbe56c c02b5d2 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a c02b5d2 dbe4bd1 c02b5d2 1ebd84a dbe4bd1 1ebd84a 5cbe56c 1ebd84a c02b5d2 5cbe56c 1ebd84a dbe4bd1 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c c02b5d2 1ebd84a 5cbe56c c02b5d2 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c c02b5d2 1ebd84a 5cbe56c dbe4bd1 c02b5d2 1ebd84a 5cbe56c 1ebd84a c02b5d2 1ebd84a 5cbe56c 1ebd84a 5cbe56c 1ebd84a 5cbe56c c02b5d2 1ebd84a 5cbe56c dbe4bd1 c02b5d2 1ebd84a 5cbe56c 1ebd84a c02b5d2 1ebd84a 5cbe56c 1ebd84a 5cbe56c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
from PIL import Image, PngImagePlugin
from datetime import datetime
import os
import gc
import time
import spaces
from typing import Optional, Tuple
from huggingface_hub import hf_hub_download
import tempfile
import random
# Global pipeline variables
txt2img_pipe = None
img2img_pipe = None
device = "cuda" if torch.cuda.is_available() else "cpu"
# Hugging Face model configuration
MODEL_REPO = "ajsbsd/CyberRealistic-Pony"
MODEL_FILENAME = "cyberrealisticPony_v110.safetensors"
model_id = f"{MODEL_REPO}/{MODEL_FILENAME}"
# Generation configuration for metadata
generation_config = {
"vae": "SDXL VAE",
"sampler": "DPM++ 2M Karras",
"steps": 20
}
def clear_memory():
"""Clear GPU memory"""
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
def add_metadata_and_save(image: Image.Image, prompt: str, negative_prompt: str, seed: int, steps: int, guidance: float, strength: Optional[float] = None):
"""Embed generation metadata into a PNG and save it."""
# Create temporary file with unique name
temp_path = tempfile.mktemp(suffix=".png")
meta = PngImagePlugin.PngInfo()
meta.add_text("Prompt", prompt)
meta.add_text("NegativePrompt", negative_prompt)
meta.add_text("Model", model_id)
meta.add_text("VAE", generation_config["vae"])
meta.add_text("Sampler", generation_config["sampler"])
meta.add_text("Steps", str(steps))
meta.add_text("CFG_Scale", str(guidance))
if strength is not None:
meta.add_text("Strength", str(strength))
meta.add_text("Seed", str(seed))
meta.add_text("Date", datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
image.save(temp_path, "PNG", pnginfo=meta)
return temp_path
def load_models():
"""Load both text2img and img2img pipelines optimized for Spaces"""
global txt2img_pipe, img2img_pipe
try:
print("Loading CyberRealistic Pony models...")
# Download model file using huggingface_hub
print(f"Downloading model from {MODEL_REPO}...")
model_path = hf_hub_download(
repo_id=MODEL_REPO,
filename=MODEL_FILENAME,
cache_dir="/tmp/hf_cache" # Use tmp for Spaces
)
print(f"Model downloaded to: {model_path}")
# Load Text2Img pipeline
if txt2img_pipe is None:
txt2img_pipe = StableDiffusionXLPipeline.from_single_file(
model_path,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
use_safetensors=True,
variant="fp16" if device == "cuda" else None
)
# Aggressive memory optimizations for Spaces
txt2img_pipe.enable_attention_slicing()
txt2img_pipe.enable_vae_slicing()
if device == "cuda":
txt2img_pipe.enable_model_cpu_offload()
txt2img_pipe.enable_sequential_cpu_offload()
else:
txt2img_pipe = txt2img_pipe.to(device)
# Share components for Img2Img to save memory
if img2img_pipe is None:
img2img_pipe = StableDiffusionXLImg2ImgPipeline(
vae=txt2img_pipe.vae,
text_encoder=txt2img_pipe.text_encoder,
text_encoder_2=txt2img_pipe.text_encoder_2,
tokenizer=txt2img_pipe.tokenizer,
tokenizer_2=txt2img_pipe.tokenizer_2,
unet=txt2img_pipe.unet,
scheduler=txt2img_pipe.scheduler,
)
# Same optimizations
img2img_pipe.enable_attention_slicing()
img2img_pipe.enable_vae_slicing()
if device == "cuda":
img2img_pipe.enable_model_cpu_offload()
img2img_pipe.enable_sequential_cpu_offload()
print("Models loaded successfully!")
return True
except Exception as e:
print(f"Error loading models: {e}")
return False
def enhance_prompt(prompt: str, add_quality_tags: bool = True) -> str:
"""Enhance prompt with Pony-style tags"""
if not prompt.strip():
return prompt
if prompt.startswith("score_") or not add_quality_tags:
return prompt
quality_tags = "score_9, score_8_up, score_7_up, masterpiece, best quality, highly detailed"
return f"{quality_tags}, {prompt}"
def validate_dimensions(width: int, height: int) -> Tuple[int, int]:
"""Ensure dimensions are valid for SDXL"""
width = ((width + 63) // 64) * 64
height = ((height + 63) // 64) * 64
# More conservative limits for Spaces
width = max(512, min(1024, width))
height = max(512, min(1024, height))
return width, height
def format_status_with_metadata(generation_time: float, width: int, height: int, prompt: str, negative_prompt: str, seed: int, steps: int, guidance: float, strength: Optional[float] = None):
"""Format status message with generation metadata"""
status_parts = [
f"β
Generated in {generation_time:.1f}s ({width}Γ{height})",
f"π― Prompt: {prompt[:50]}..." if len(prompt) > 50 else f"π― Prompt: {prompt}",
f"π« Negative: {negative_prompt[:30]}..." if negative_prompt and len(negative_prompt) > 30 else f"π« Negative: {negative_prompt or 'None'}",
f"π² Seed: {seed}",
f"π Steps: {steps}",
f"ποΈ CFG: {guidance}"
]
if strength is not None:
status_parts.append(f"πͺ Strength: {strength}")
return "\n".join(status_parts)
@spaces.GPU(duration=60) # GPU decorator for Spaces
def generate_txt2img(prompt, negative_prompt, num_steps, guidance_scale, width, height, seed, add_quality_tags):
"""Generate image from text prompt with Spaces GPU support"""
global txt2img_pipe
if not prompt.strip():
return None, "Please enter a prompt"
# Lazy load models
if txt2img_pipe is None:
if not load_models():
return None, "Failed to load models. Please try again."
try:
clear_memory()
# Validate dimensions
width, height = validate_dimensions(width, height)
# Handle seed
if seed == -1:
seed = random.randint(0, 2147483647)
# Set seed
generator = torch.Generator(device=device).manual_seed(int(seed))
# Enhance prompt
enhanced_prompt = enhance_prompt(prompt, add_quality_tags)
print(f"Generating: {enhanced_prompt[:100]}...")
start_time = time.time()
# Generate with lower memory usage
with torch.no_grad():
result = txt2img_pipe(
prompt=enhanced_prompt,
negative_prompt=negative_prompt or "",
num_inference_steps=min(int(num_steps), 30), # Limit steps for Spaces
guidance_scale=float(guidance_scale),
width=width,
height=height,
generator=generator
)
generation_time = time.time() - start_time
# Save with metadata - returns file path
png_path = add_metadata_and_save(
result.images[0], enhanced_prompt, negative_prompt or "",
seed, num_steps, guidance_scale
)
# Format status with metadata
status = format_status_with_metadata(
generation_time, width, height, enhanced_prompt,
negative_prompt or "", seed, num_steps, guidance_scale
)
return png_path, status
except Exception as e:
return None, f"Generation failed: {str(e)}"
finally:
clear_memory()
@spaces.GPU(duration=60) # GPU decorator for Spaces
def generate_img2img(input_image, prompt, negative_prompt, num_steps, guidance_scale, strength, seed, add_quality_tags):
"""Generate image from input image + text prompt with Spaces GPU support"""
global img2img_pipe
if input_image is None:
return None, "Please upload an input image"
if not prompt.strip():
return None, "Please enter a prompt"
# Lazy load models
if img2img_pipe is None:
if not load_models():
return None, "Failed to load models. Please try again."
try:
clear_memory()
# Handle seed
if seed == -1:
seed = random.randint(0, 2147483647)
# Set seed
generator = torch.Generator(device=device).manual_seed(int(seed))
# Enhance prompt
enhanced_prompt = enhance_prompt(prompt, add_quality_tags)
# Process input image
if isinstance(input_image, Image.Image):
if input_image.mode != 'RGB':
input_image = input_image.convert('RGB')
# Conservative resize for Spaces
max_size = 768
input_image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
w, h = input_image.size
w, h = validate_dimensions(w, h)
input_image = input_image.resize((w, h), Image.Resampling.LANCZOS)
print(f"Transforming: {enhanced_prompt[:100]}...")
start_time = time.time()
with torch.no_grad():
result = img2img_pipe(
prompt=enhanced_prompt,
negative_prompt=negative_prompt or "",
image=input_image,
num_inference_steps=min(int(num_steps), 30), # Limit steps
guidance_scale=float(guidance_scale),
strength=float(strength),
generator=generator
)
generation_time = time.time() - start_time
# Save with metadata - returns file path
png_path = add_metadata_and_save(
result.images[0], enhanced_prompt, negative_prompt or "",
seed, num_steps, guidance_scale, strength
)
# Format status with metadata
status = format_status_with_metadata(
generation_time, w, h, enhanced_prompt,
negative_prompt or "", seed, num_steps, guidance_scale, strength
)
return png_path, status
except Exception as e:
return None, f"Transformation failed: {str(e)}"
finally:
clear_memory()
# Example prompts for inspiration
EXAMPLE_PROMPTS = [
"beautiful anime girl with long flowing hair, cherry blossoms, soft lighting",
"cyberpunk cityscape at night, neon lights, rain reflections, detailed architecture",
"majestic dragon flying over mountains, fantasy landscape, dramatic clouds",
"cute anthropomorphic fox character, forest background, magical atmosphere",
"elegant woman in Victorian dress, portrait, ornate background, vintage style",
"futuristic robot with glowing eyes, metallic surface, sci-fi environment",
"mystical unicorn in enchanted forest, rainbow mane, sparkles, ethereal lighting",
"steampunk airship floating in sky, gears and brass, adventure scene"
]
def set_example_prompt():
"""Return a random example prompt"""
return random.choice(EXAMPLE_PROMPTS)
# Simplified negative prompt for better performance
DEFAULT_NEGATIVE = """
(low quality:1.3), (worst quality:1.3), (bad quality:1.2), blurry, noisy, ugly, deformed,
(text, watermark:1.4), (extra limbs:1.3), (bad hands:1.3), (bad anatomy:1.2)
"""
# Gradio interface optimized for Spaces
with gr.Blocks(
title="CyberRealistic Pony Generator",
theme=gr.themes.Soft()
) as demo:
gr.Markdown("""
# π¨ CyberRealistic Pony Image Generator
Generate high-quality images using the CyberRealistic Pony SDXL model.
β οΈ **Note**: First generation may take longer as the model loads. GPU time is limited on Spaces.
π **Metadata**: All generated images include embedded metadata (prompt, settings, seed, etc.)
""")
with gr.Tabs():
with gr.TabItem("π¨ Text to Image"):
with gr.Row():
with gr.Column():
with gr.Row():
txt2img_prompt = gr.Textbox(
label="Prompt",
placeholder="beautiful landscape, mountains, sunset",
lines=2,
scale=4
)
txt2img_example_btn = gr.Button("π² Random Example", scale=1)
with gr.Accordion("Advanced Settings", open=False):
txt2img_negative = gr.Textbox(
label="Negative Prompt",
value=DEFAULT_NEGATIVE,
lines=2
)
txt2img_quality_tags = gr.Checkbox(
label="Add Quality Tags",
value=True
)
with gr.Row():
txt2img_steps = gr.Slider(10, 30, 20, step=1, label="Steps")
txt2img_guidance = gr.Slider(1.0, 15.0, 7.5, step=0.5, label="Guidance")
with gr.Row():
txt2img_width = gr.Slider(512, 1024, 768, step=64, label="Width")
txt2img_height = gr.Slider(512, 1024, 768, step=64, label="Height")
txt2img_seed = gr.Slider(
minimum=-1, maximum=2147483647, value=-1, step=1,
label="Seed (-1 for random)"
)
txt2img_btn = gr.Button("π¨ Generate", variant="primary", size="lg")
with gr.Column():
txt2img_output = gr.File(label="Generated PNG with Metadata", file_types=[".png"])
txt2img_status = gr.Textbox(label="Generation Info", interactive=False, lines=6)
with gr.TabItem("πΌοΈ Image to Image"):
with gr.Row():
with gr.Column():
img2img_input = gr.Image(label="Input Image", type="pil", height=250)
with gr.Row():
img2img_prompt = gr.Textbox(
label="Prompt",
placeholder="digital painting style, vibrant colors",
lines=2,
scale=4
)
img2img_example_btn = gr.Button("π² Random Example", scale=1)
with gr.Accordion("Advanced Settings", open=False):
img2img_negative = gr.Textbox(
label="Negative Prompt",
value=DEFAULT_NEGATIVE,
lines=2
)
img2img_quality_tags = gr.Checkbox(
label="Add Quality Tags",
value=True
)
with gr.Row():
img2img_steps = gr.Slider(10, 30, 20, step=1, label="Steps")
img2img_guidance = gr.Slider(1.0, 15.0, 7.5, step=0.5, label="Guidance")
img2img_strength = gr.Slider(
0.1, 1.0, 0.75, step=0.05,
label="Strength (Higher = more creative)"
)
img2img_seed = gr.Slider(
minimum=-1, maximum=2147483647, value=-1, step=1,
label="Seed (-1 for random)"
)
img2img_btn = gr.Button("πΌοΈ Transform", variant="primary", size="lg")
with gr.Column():
img2img_output = gr.File(label="Generated PNG with Metadata", file_types=[".png"])
img2img_status = gr.Textbox(label="Generation Info", interactive=False, lines=6)
# Event handlers
txt2img_btn.click(
fn=generate_txt2img,
inputs=[txt2img_prompt, txt2img_negative, txt2img_steps, txt2img_guidance,
txt2img_width, txt2img_height, txt2img_seed, txt2img_quality_tags],
outputs=[txt2img_output, txt2img_status]
)
img2img_btn.click(
fn=generate_img2img,
inputs=[img2img_input, img2img_prompt, img2img_negative, img2img_steps, img2img_guidance,
img2img_strength, img2img_seed, img2img_quality_tags],
outputs=[img2img_output, img2img_status]
)
# Example prompt buttons
txt2img_example_btn.click(
fn=set_example_prompt,
outputs=[txt2img_prompt]
)
img2img_example_btn.click(
fn=set_example_prompt,
outputs=[img2img_prompt]
)
print(f"π CyberRealistic Pony Generator initialized on {device}")
if __name__ == "__main__":
demo.launch() |