Spaces:
Runtime error
Runtime error
File size: 7,250 Bytes
8055a93 16cf878 8055a93 5052352 e4eb7c7 f6a19a0 df508cf 8055a93 1f8cf5a cdaec39 8055a93 e4eb7c7 631d859 0de5b43 d9264f3 1d60ab2 8055a93 2c16f82 8055a93 8c0bbae 49cc5e0 8055a93 d9264f3 7ab7abe ed960ea c755b00 7ab7abe 39785e9 a8a8ff6 1eb61ab ba94872 a8a8ff6 d9264f3 a8a8ff6 5e112a6 8055a93 ec107ac ed960ea a8a8ff6 a16969c 837067e 272bf11 837067e a8a8ff6 5052352 8055a93 7ab7abe ba94872 cd208bd 5f99ca5 b04e2f0 cea5a83 cd208bd 7ab7abe ba94872 a16969c ba94872 a16969c cd208bd a16969c cd208bd cea5a83 f179843 8055a93 f179843 1668d01 b04e2f0 fe9c860 456f78e 671f7b0 0647997 456f78e b1f36fa 8055a93 cea5a83 f179843 cea5a83 f179843 cea5a83 0647997 b1f36fa cea5a83 f179843 cea5a83 5b3b5e2 cea5a83 a190ff7 731c251 5b3b5e2 731c251 cea5a83 5b3b5e2 cea5a83 0647997 cea5a83 2fbc455 ebc7be4 cea5a83 ebc7be4 cea5a83 ebc7be4 456f78e ebc7be4 cea5a83 8055a93 b1f36fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
#import initialize
# vectordb = initialize.initialize()
import embed
vectordb = embed.initialize()
from langchain_openai import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chains import VectorDBQA
from langchain_community.llms import OpenAI
from langchain_core.prompts import PromptTemplate
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.chains import LLMChain
from langchain_google_genai import GoogleGenerativeAI
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains import ChatVectorDBChain
import gradio as gr
import requests
import os
from langchain_ollama.llms import OllamaLLM
from langchain_community.llms import Ollama
from langchain_huggingface import HuggingFaceEndpoint
import sys
sys.path.append('../..')
# For Google Colab
'''
from google.colab import userdata
OPENAI_API_KEY = userdata.get('OPENAI_API_KEY')
hf_token = userdata.get('hf_token')
GEMINI_API_KEY = userdata.get('GEMINI_API_KEY')
# For Desktop
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # Read local .env file
OPENAI_API_KEY = os.environ['OPENAI_API_KEY']
hf_token = os.environ['hf_token']
GEMINI_API_KEY = os.environ['GEMINI_API_KEY']
'''
# For Hugging Face
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
HF_token = os.environ.get('HF_token')
GEMINI_API_KEY = os.environ.get('GEMINI_API_KEY')
fs_token = os.environ.get('fs_token')
llm_name = "gpt-3.5-turbo-0125"
chat_history_doc = []
chat_history_IS = []
# For getting source documents
def get_file(source_documents):
files = set()
for doc in source_documents:
file = os.path.basename(doc.metadata['source'])
files.add(file)
# Print unique filenames
return list(set(files))
def chat_query_doc(question, chat_history_doc):
query = f"""Please provide a precise, point-wise reply to the query: {question}.\
Highlight the important points using properly formatted text, such as bullet points, bold text, or italics where appropriate."""
#llm = OllamaLLM(model="llama3")
#llm = Ollama(model="llama3")
#repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
#llm = ChatOpenAI(model = llm_name, temperature = 0.1, api_key = OPENAI_API_KEY)
#llm = GoogleGenerativeAI(model = "gemini-pro", google_api_key = GEMINI_API_KEY)
#llm = ChatGoogleGenerativeAI(model = "gemini-1.0-pro", google_api_key = GEMINI_API_KEY, temperature = 0)
llm = HuggingFaceEndpoint(repo_id="HuggingFaceH4/zephyr-7b-beta",
temperature=0.01,
repetition_penalty=1.02,
huggingfacehub_api_token=HF_token,
)
retriever = vectordb.as_retriever()
memory_doc = ConversationBufferMemory(memory_key="chat_history", return_messages=True, output_key="answer")
qa = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, return_source_documents=True, memory=memory_doc)
result = qa({"question": query, "chat_history": chat_history_doc})
chat_history_doc.append((question, result["answer"]))
source_docs = result["source_documents"]
file_names = get_file(source_docs)
file_name = ', '.join([f"{x}" for x in file_names[:3]])
return result["answer"] + "\n\nSources : " + file_name
def chat_query_IS(question, chat_history_IS):
"""
Handles queries about Indian/International Standards using OpenAI model.
"""
llm = ChatOpenAI(model = llm_name, temperature = 0.1, api_key = OPENAI_API_KEY)
#llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=GEMINI_API_KEY) ###
#llm = OllamaLLM(model="unsloth/Llama-3.2-3B")
# llm = HuggingFacePipeline.from_model_id(
# model_id=llm_name, # Replace with a valid Hugging Face model ID
# task="text-generation", # Specify the appropriate task for your model
# device=0, # Use -1 for CPU or 0 for GPU
# model_kwargs={"temperature": 0.1}
# )
system_prompt = f"""
Provide an elaborate, detailed and point-wise reply about the topic as per relevant IS/IEEE/BIS standards:
Topic: {question}
At the end of your reply, quote the relevant standard referred.
"""
system = f""" Provide a reply poetically precise as william shakespeare for the Topic : {question}"""
result = llm.invoke(system_prompt)
chat_history_IS.append((system_prompt, result.content))
return result.content
iface_doc = gr.ChatInterface(
fn=chat_query_doc,
title="""Standard TS of POWERGRID""",
concurrency_limit = None,
examples = ["What should be the GIB height outside the GIS hall ?" ,
"STATCOM Station Ratings" ,
"Specifications of XLPE POWER Cables.",
"Specification for Ethernet Switches in SAS."] ,
theme=gr.themes.Base(),
fill_height = True,
delete_cache = (300,360),
css = "CSS/chat_style.css",
).queue()
iface_IS = gr.ChatInterface(
fn = chat_query_IS,
title = """Indian / International Standards""",
concurrency_limit = None,
examples = ["Type Tests for HV Switchgears." ,
"Measurement of acoustic noise level of Transformers & Reactors" ,
"Technical Requirement for 765kV class Transformer",
"Specification of Distance Relays"] ,
theme=gr.themes.Base(),
fill_height = True,
delete_cache = (300,360),
css = "CSS/chat_style.css",
).queue()
Title= "# Conversational BOT for Model-TS & Indian / International Standards"
Description = """
### Welcome to the Language Model (SS-Engg-Dept.)! ๐
This model is trained on **Model Technical Specifications** of the SS-Engg. Dept. and leverages the power of **ChatGPT** to answer your queries based on:
* Relevant TS, GTR & Specific Requirements ๐
* International/Indian Standards ๐๐ฎ๐ณ
**Tips for Effective Use:**
* Use elaborate questions for more accurate responses. ๐ค
* Clear the chat if you don't receive a reply. ๐
* Include **Specific Keywords** in your query for precise results. ๐ฏ
"""
with gr.Blocks(css="CSS/style.css", fill_height=True) as demo:
# history = gr.State([]) # Initialize the state component
with gr.Column():
with gr.Row():
with gr.Column(scale=1):
gr.Image("Images/Chatbot.png", width = 110, show_download_button = False, show_label = False, show_share_button = False, elem_id = "Logo")
with gr.Column(scale=3):
gr.Markdown(Title)
with gr.Column(scale=1):
gr.Image("Images/PG Logo.png", width = 200, show_download_button = False, show_label = False, show_share_button = False, elem_id = "PG_Logo")
with gr.Row():
gr.Markdown(Description)
with gr.Row(equal_height=True):
with gr.Column(elem_classes = ["chat_container"]):
iface_doc.render()
with gr.Column(elem_classes = ["chat_container"]):
iface_IS.render()
#if __name__ == "__main__":
demo.launch(debug=True) |