File size: 7,250 Bytes
8055a93
16cf878
 
 
 
 
 
 
8055a93
 
 
5052352
e4eb7c7
 
 
 
f6a19a0
df508cf
8055a93
1f8cf5a
cdaec39
8055a93
 
e4eb7c7
 
631d859
0de5b43
d9264f3
1d60ab2
 
 
 
 
8055a93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c16f82
8055a93
 
 
8c0bbae
49cc5e0
8055a93
d9264f3
7ab7abe
 
ed960ea
 
 
 
 
 
 
 
 
 
c755b00
7ab7abe
39785e9
a8a8ff6
 
1eb61ab
ba94872
 
a8a8ff6
d9264f3
a8a8ff6
5e112a6
8055a93
ec107ac
 
 
 
 
ed960ea
a8a8ff6
 
 
 
 
a16969c
837067e
 
 
272bf11
837067e
a8a8ff6
 
5052352
8055a93
7ab7abe
ba94872
 
 
cd208bd
5f99ca5
b04e2f0
cea5a83
cd208bd
 
 
 
 
 
7ab7abe
ba94872
 
 
 
 
a16969c
ba94872
a16969c
cd208bd
 
a16969c
cd208bd
cea5a83
 
 
 
f179843
8055a93
f179843
1668d01
b04e2f0
 
fe9c860
456f78e
671f7b0
0647997
456f78e
b1f36fa
8055a93
cea5a83
 
f179843
cea5a83
f179843
 
 
 
cea5a83
 
 
0647997
b1f36fa
cea5a83
f179843
cea5a83
 
5b3b5e2
cea5a83
a190ff7
731c251
5b3b5e2
 
731c251
cea5a83
 
5b3b5e2
 
 
 
cea5a83
 
0647997
cea5a83
2fbc455
ebc7be4
 
cea5a83
ebc7be4
 
 
 
 
 
 
cea5a83
ebc7be4
 
456f78e
ebc7be4
 
 
 
 
cea5a83
8055a93
b1f36fa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

#import initialize
# vectordb = initialize.initialize()

import embed
vectordb = embed.initialize()


from langchain_openai import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chains import VectorDBQA
from langchain_community.llms import OpenAI
from langchain_core.prompts import PromptTemplate
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.chains import LLMChain
from langchain_google_genai import GoogleGenerativeAI
from langchain_google_genai import ChatGoogleGenerativeAI

from langchain.chains import ChatVectorDBChain

import gradio as gr
import requests
import os

from langchain_ollama.llms import OllamaLLM
from langchain_community.llms import Ollama

from langchain_huggingface import HuggingFaceEndpoint





import sys
sys.path.append('../..')

# For Google Colab
'''
from google.colab import userdata
OPENAI_API_KEY = userdata.get('OPENAI_API_KEY')
hf_token = userdata.get('hf_token')
GEMINI_API_KEY = userdata.get('GEMINI_API_KEY')
# For Desktop
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # Read local .env file
OPENAI_API_KEY = os.environ['OPENAI_API_KEY']
hf_token = os.environ['hf_token']
GEMINI_API_KEY = os.environ['GEMINI_API_KEY']
'''

# For Hugging Face
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
HF_token = os.environ.get('HF_token')
GEMINI_API_KEY = os.environ.get('GEMINI_API_KEY')
fs_token = os.environ.get('fs_token')


llm_name = "gpt-3.5-turbo-0125"


chat_history_doc = []
chat_history_IS = []

# For getting source documents
def get_file(source_documents):
  files = set()
  for doc in source_documents:
    file = os.path.basename(doc.metadata['source'])
    files.add(file)
    # Print unique filenames
  return list(set(files))


def chat_query_doc(question, chat_history_doc):

    query = f"""Please provide a precise, point-wise reply to the query: {question}.\
                Highlight the important points using properly formatted text, such as bullet points, bold text, or italics where appropriate."""

    #llm = OllamaLLM(model="llama3")
    #llm = Ollama(model="llama3")
    #repo_id = "mistralai/Mistral-7B-Instruct-v0.2"
    #llm = ChatOpenAI(model = llm_name, temperature = 0.1, api_key = OPENAI_API_KEY)
    #llm = GoogleGenerativeAI(model = "gemini-pro", google_api_key = GEMINI_API_KEY)
    #llm = ChatGoogleGenerativeAI(model = "gemini-1.0-pro", google_api_key = GEMINI_API_KEY, temperature = 0)

    llm = HuggingFaceEndpoint(repo_id="HuggingFaceH4/zephyr-7b-beta",
                              temperature=0.01,
                              repetition_penalty=1.02,
                              huggingfacehub_api_token=HF_token,
                             )

    retriever = vectordb.as_retriever()
    memory_doc = ConversationBufferMemory(memory_key="chat_history", return_messages=True, output_key="answer")
    qa = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, return_source_documents=True, memory=memory_doc) 
    result = qa({"question": query, "chat_history": chat_history_doc})
    chat_history_doc.append((question, result["answer"]))

    source_docs = result["source_documents"]
    file_names = get_file(source_docs)
    file_name = ', '.join([f"{x}" for x in file_names[:3]])

    return result["answer"] + "\n\nSources : " + file_name
  



def chat_query_IS(question, chat_history_IS):
    """
    Handles queries about Indian/International Standards using OpenAI model.
    """
    llm = ChatOpenAI(model = llm_name, temperature = 0.1, api_key = OPENAI_API_KEY)
    #llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=GEMINI_API_KEY)                                   ###
    #llm = OllamaLLM(model="unsloth/Llama-3.2-3B")

    # llm = HuggingFacePipeline.from_model_id(
    #     model_id=llm_name,  # Replace with a valid Hugging Face model ID
    #     task="text-generation",  # Specify the appropriate task for your model
    #     device=0,  # Use -1 for CPU or 0 for GPU
    #     model_kwargs={"temperature": 0.1}
    # )
    
    system_prompt = f"""
        Provide an elaborate, detailed and point-wise reply about the topic as per relevant IS/IEEE/BIS standards:
        Topic: {question}
        At the end of your reply, quote the relevant standard referred.
    """

    system = f""" Provide a reply poetically precise as william shakespeare for the Topic : {question}"""

    result = llm.invoke(system_prompt)
    chat_history_IS.append((system_prompt, result.content))
    
    return result.content


iface_doc = gr.ChatInterface(
    fn=chat_query_doc,
    title="""Standard TS of POWERGRID""",
    concurrency_limit = None,
    examples = ["What should be the GIB height outside the GIS hall ?" ,
                 "STATCOM Station Ratings" , 
                 "Specifications of XLPE POWER Cables.", 
                 "Specification for Ethernet Switches in SAS."] ,
    theme=gr.themes.Base(),
    fill_height = True,
    delete_cache = (300,360),
    css = "CSS/chat_style.css",

).queue()

iface_IS = gr.ChatInterface(
    fn = chat_query_IS,
    title = """Indian / International Standards""",
    concurrency_limit = None,
    examples = ["Type Tests for HV Switchgears." ,
                "Measurement of acoustic noise level of Transformers & Reactors" , 
                "Technical Requirement for 765kV class Transformer", 
                "Specification of Distance Relays"] ,
    theme=gr.themes.Base(),
    fill_height = True,
    delete_cache = (300,360),
    css = "CSS/chat_style.css",
).queue()

Title= "# Conversational BOT for Model-TS & Indian / International Standards"

Description = """
### Welcome to the Language Model (SS-Engg-Dept.)! ๐Ÿ‘‹

This model is trained on **Model Technical Specifications** of the SS-Engg. Dept. and leverages the power of **ChatGPT** to answer your queries based on:

*   Relevant TS, GTR & Specific Requirements ๐Ÿ“‘
*   International/Indian Standards ๐ŸŒŽ๐Ÿ‡ฎ๐Ÿ‡ณ

**Tips for Effective Use:**

*   Use elaborate questions for more accurate responses. ๐Ÿค”
*   Clear the chat if you don't receive a reply. ๐Ÿ”„
*   Include **Specific Keywords** in your query for precise results. ๐ŸŽฏ 
"""              
 

with gr.Blocks(css="CSS/style.css", fill_height=True) as demo:
  
    # history = gr.State([])  # Initialize the state component
   
    with gr.Column():
    
        with gr.Row():
          with gr.Column(scale=1):
            gr.Image("Images/Chatbot.png", width = 110, show_download_button = False, show_label = False, show_share_button = False, elem_id = "Logo")
          with gr.Column(scale=3):
            gr.Markdown(Title)
          with gr.Column(scale=1):
            gr.Image("Images/PG Logo.png", width = 200, show_download_button = False, show_label = False, show_share_button = False, elem_id = "PG_Logo")  
    
        with gr.Row():
          gr.Markdown(Description)
    
        with gr.Row(equal_height=True):
          with gr.Column(elem_classes = ["chat_container"]):
            iface_doc.render()
          with gr.Column(elem_classes = ["chat_container"]):
            iface_IS.render()  
       

#if __name__ == "__main__":
demo.launch(debug=True)