ai-agent / old.py
abdibrahem's picture
Add new logic
4d047b2
import re
import json
import requests
import traceback
import time
import os
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime, timedelta
# Updated imports for pydantic
from pydantic import BaseModel, Field
# Updated imports for LangChain
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_ollama import OllamaLLM
from langchain.chains import LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
# Enhanced HuggingFace imports for improved functionality
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
# Import endpoints documentation
from endpoints_documentation import endpoints_documentation
# Set environment variables for HuggingFace
# if os.name == 'posix' and os.uname().sysname == 'Darwin': # Check if running on macOS
# os.environ["HF_HOME"] = os.path.expanduser("~/Library/Caches/huggingface")
# os.environ["TRANSFORMERS_CACHE"] = os.path.expanduser("~/Library/Caches/huggingface/transformers")
# else:
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
class ChatMessage(BaseModel):
"""Data model for chat messages"""
message_id: str = Field(..., description="Unique identifier for the message")
user_id: str = Field(..., description="User identifier")
message: str = Field(..., description="The user's message")
timestamp: datetime = Field(default_factory=datetime.now, description="When the message was sent")
language: str = Field(default="english", description="Detected language of the message")
class ChatResponse(BaseModel):
"""Data model for chatbot responses"""
response_id: str = Field(..., description="Unique identifier for the response")
response_type: str = Field(..., description="Type of response: 'conversation' or 'api_action'")
message: str = Field(..., description="The chatbot's response message")
api_call_made: bool = Field(default=False, description="Whether an API call was made")
api_data: Optional[Dict[str, Any]] = Field(default=None, description="API response data if applicable")
language: str = Field(default="english", description="Language of the response")
timestamp: datetime = Field(default_factory=datetime.now, description="When the response was generated")
class EndpointRequest(BaseModel):
"""Data model for API endpoint requests"""
endpoint: str = Field(..., description="The API endpoint path to call")
method: str = Field(..., description="The HTTP method to use (GET or POST)")
params: Dict[str, Any] = Field(default_factory=dict, description="Parameters for the API call")
missing_required: List[str] = Field(default_factory=list, description="Any required parameters that are missing")
class HealthcareChatbot:
def __init__(self):
self.endpoints_documentation = endpoints_documentation
self.ollama_base_url = "http://localhost:11434"
self.model_name = "gemma3"
self.BASE_URL = 'https://f376-197-54-54-66.ngrok-free.app'
self.headers = {'Content-type': 'application/json'}
self.user_id = '86639f4c-5dfc-441d-b229-084f0fcdd748'
self.max_retries = 3
self.retry_delay = 2
# Store conversation history
self.conversation_history = []
self.max_history_length = 10 # Keep last 10 exchanges
# Initialize components
self._initialize_language_tools()
self._initialize_llm()
self._initialize_parsers_and_chains()
self._initialize_date_parser()
print("Healthcare Chatbot initialized successfully!")
self._print_welcome_message()
def _print_welcome_message(self):
"""Print welcome message in both languages"""
print("\n" + "="*60)
print("🏥 HEALTHCARE CHATBOT READY")
print("="*60)
print("English: Hello! I'm your healthcare assistant. I can help you with:")
print("• Booking and managing appointments")
print("• Finding hospital information")
print("• Viewing your medical records")
print("• General healthcare questions")
print()
print("Arabic: مرحباً! أنا مساعدك الطبي. يمكنني مساعدتك في:")
print("• حجز وإدارة المواعيد")
print("• العثور على معلومات المستشفى")
print("• عرض سجلاتك الطبية")
print("• الأسئلة الطبية العامة")
print("="*60)
print("Type 'quit' or 'خروج' to exit\n")
def _initialize_language_tools(self):
"""Initialize language processing tools"""
try:
self.embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
self.language_classifier = pipeline(
"text-classification",
model="papluca/xlm-roberta-base-language-detection",
top_k=1
)
self.sentiment_analyzer = pipeline(
"sentiment-analysis",
model="cardiffnlp/twitter-xlm-roberta-base-sentiment"
)
print("✓ Language processing models loaded successfully")
except Exception as e:
print(f"⚠ Warning: Some language models failed to load: {e}")
self.language_classifier = None
self.sentiment_analyzer = None
def _initialize_date_parser(self):
"""Initialize date parsing model"""
try:
self.date_parser = pipeline(
"token-classification",
model="Jean-Baptiste/roberta-large-ner-english",
aggregation_strategy="simple"
)
except Exception as e:
print(f"⚠ Warning: Date parsing model failed to load: {e}")
self.date_parser = None
def _initialize_llm(self):
"""Initialize the LLM"""
callbacks = [StreamingStdOutCallbackHandler()]
self.llm = OllamaLLM(
model=self.model_name,
base_url=self.ollama_base_url,
callbacks=callbacks,
temperature=0.7,
num_ctx=8192,
top_p=0.9,
request_timeout=60,
)
def _initialize_parsers_and_chains(self):
"""Initialize all prompt templates and chains"""
self.json_parser = JsonOutputParser(pydantic_object=EndpointRequest)
# Intent classification prompt
# self.intent_classifier_template = PromptTemplate(
# template="""
# You are an intent classifier. Your job is simple: understand what the user wants and check if any API endpoint can do that.
# User Message: {user_query}
# Language: {detected_language}
# API Endpoints: {endpoints_documentation}
# Think step by step:
# 1. What does the user want from this message?
# Read the user's message carefully. What is the user trying to say or accomplish? What would a human understand from this message?
# 2. Can any API endpoint fulfill what the user wants?
# Look at each API endpoint. Does any endpoint do what the user is asking for? Be very precise - only say yes if there's a clear match.
# Important rules:
# - Focus ONLY on the current message, ignore conversation history for classification
# - If the user is just talking, being social, or saying something casual, that's CONVERSATION
# - Only choose API_ACTION if the user is clearly asking for something an API endpoint can do
# - When you're not sure, choose CONVERSATION
# Answer in this format:
# {{
# "intent": "API_ACTION" or "CONVERSATION",
# "confidence": [0.0 to 1.0],
# "reasoning": "What does the user want? Can any API do this?",
# "requires_backend": true or false
# }}
# """,
# input_variables=["user_query", "detected_language", "conversation_history", "endpoints_documentation"]
# )
self.intent_classifier_template = PromptTemplate(
template="""
You are a strict intent classification system. Your only task is to determine if the user message requires an API action or is general conversation.
=== ABSOLUTE RULES ===
1. OUTPUT FORMAT MUST BE EXACTLY:
{{
"intent": "API_ACTION" or "CONVERSATION",
"confidence": 0.0-1.0,
"reasoning": "clear justification",
"requires_backend": true or false
}}
2. Never invent custom intent types
3. Never output endpoint names in the intent field
4. "requires_backend" must match the intent (true for API_ACTION)
=== CLASSIFICATION CRITERIA ===
API_ACTION must meet ALL of:
- The message contains a clear, actionable request
- The request matches a documented API endpoint's purpose
- The request requires specific backend functionality
CONVERSATION applies when:
- The message is social/greeting/smalltalk
- The request is too vague for API action
- No API endpoint matches the request
=== INPUT DATA ===
User Message: {user_query}
Detected Language: {detected_language}
API Endpoints: {endpoints_documentation}
=== DECISION PROCESS ===
1. Analyze the message literally - what is the explicit request?
2. Check endpoints documentation - is there an exact functional match?
3. If uncertain, default to CONVERSATION
4. Validate against rules before responding
=== OUTPUT VALIDATION ===
Before responding, verify:
- Intent is ONLY "API_ACTION" or "CONVERSATION"
- Confidence reflects certainty (1.0 = perfect match)
- Reasoning explains the endpoint match (for API_ACTION)
- requires_backend aligns with intent
Respond ONLY in the exact specified format.
""",
input_variables=["user_query", "detected_language", "conversation_history", "endpoints_documentation"]
)
# API routing prompt (reuse existing router_prompt_template)
self.router_prompt_template = PromptTemplate(
template="""
You are a precise API routing assistant. Your job is to analyze user queries and select the correct API endpoint with proper parameters.
=== ENDPOINT DOCUMENTATION ===
{endpoints_documentation}
=== USER REQUEST ANALYSIS ===
User Query: {user_query}
Language: {detected_language}
Keywords: {extracted_keywords}
Sentiment: {sentiment_analysis}
Current Context:
- DateTime: {current_datetime}
- Timezone: {timezone}
- User Locale: {user_locale}
=== ROUTING PROCESS ===
Follow these steps in order:
STEP 1: INTENT ANALYSIS
- What is the user trying to accomplish?
- What type of operation are they requesting? (create, read, update, delete, search, etc.)
- What entity/resource are they working with?
STEP 2: DATE/TIME PROCESSING
- Identify any temporal expressions in the user query
- Convert relative dates/times using the current context:
* "اليوم" (today) = current date
* "غدا" (tomorrow) = current date + 1 day
* "أمس" (yesterday) = current date - 1 day
* "الأسبوع القادم" (next week) = current date + 7 days
* "بعد ساعتين" (in 2 hours) = current time + 2 hours
* "صباحًا" (morning/AM), "مساءً" (evening/PM)
- Handle different date formats and languages
- Account for timezone differences
- Convert to ISO 8601 format: YYYY-MM-DDTHH:MM:SS
STEP 3: ENDPOINT MATCHING
- Review each endpoint in the documentation
- Match the user's intent to the endpoint's PURPOSE/DESCRIPTION
- Consider the HTTP method (GET for retrieval, POST for creation, etc.)
- Verify the endpoint can handle the user's specific request
STEP 4: PARAMETER EXTRACTION
- Identify ALL required parameters from the endpoint documentation
- Extract parameter values from the user query
- Convert data types as needed:
- Dates/times to ISO 8601 format (YYYY-MM-DDTHH:mm:ss)
- Numbers to integers
- Set appropriate defaults for optional parameters if beneficial
STEP 5: VALIDATION
- Ensure ALL required parameters are provided or identified as missing
- Verify parameter formats match documentation requirements
- Check that the selected endpoint actually solves the user's problem
=== RESPONSE FORMAT ===
Provide your analysis and decision in this exact JSON structure:
{{
"reasoning": {{
"user_intent": "Brief description of what the user wants to accomplish",
"selected_endpoint": "Why this endpoint was chosen over others",
"parameter_mapping": "How user query maps to endpoint parameters"
}},
"endpoint": "/exact_endpoint_path_from_documentation",
"method": "HTTP_METHOD",
"params": {{
"required_param_1": "extracted_or_converted_value",
"required_param_2": "extracted_or_converted_value",
"optional_param": "value_if_applicable"
}},
"missing_required": ["list", "of", "missing", "required", "parameters"],
"confidence": 0.95
}}
=== CRITICAL RULES ===
1. ONLY select endpoints that exist in the provided documentation
2. NEVER fabricate or assume endpoint parameters not in documentation
3. ALL required parameters MUST be included or listed as missing
4. Convert dates/times to ISO 8601 format (YYYY-MM-DDTHH:mm:ss)
5. If patient_id is required and not provided, add it to missing_required
6. Match endpoints by PURPOSE, not just keywords in the path
7. If multiple endpoints could work, choose the most specific one
8. If no endpoint matches, set endpoint to null and explain in reasoning
=== EXAMPLES OF GOOD MATCHING ===
- User wants "patient records" → Use patient retrieval endpoint, not general search
- User wants to "schedule appointment" → Use appointment creation endpoint
- User asks "what appointments today" → Use appointment listing with date filter
- User wants to "update medication" → Use medication update endpoint with patient_id
Think step by step and be precise with your endpoint selection and parameter extraction.:""",
input_variables=["endpoints_documentation", "user_query", "detected_language",
"extracted_keywords", "sentiment_analysis", "conversation_history",
"current_datetime", "timezone", "user_locale"]
)
# old one
# self.router_prompt_template = PromptTemplate(
# template="""
# You are a precise API routing assistant. Your job is to analyze user queries and select the correct API endpoint with proper parameters.
# === ENDPOINT DOCUMENTATION ===
# {endpoints_documentation}
# === USER REQUEST ANALYSIS ===
# User Query: {user_query}
# Language: {detected_language}
# Keywords: {extracted_keywords}
# Sentiment: {sentiment_analysis}
# === ROUTING PROCESS ===
# Follow these steps in order:
# STEP 1: INTENT ANALYSIS
# - What is the user trying to accomplish?
# - What type of operation are they requesting? (create, read, update, delete, search, etc.)
# - What entity/resource are they working with?
# STEP 2: ENDPOINT MATCHING
# - Review each endpoint in the documentation
# - Match the user's intent to the endpoint's PURPOSE/DESCRIPTION
# - Consider the HTTP method (GET for retrieval, POST for creation, etc.)
# - Verify the endpoint can handle the user's specific request
# STEP 3: PARAMETER EXTRACTION
# - Identify ALL required parameters from the endpoint documentation
# - Extract parameter values from the user query
# - Convert data types as needed (dates to ISO 8601, numbers to integers, etc.)
# - Set appropriate defaults for optional parameters if beneficial
# STEP 4: VALIDATION
# - Ensure ALL required parameters are provided or identified as missing
# - Verify parameter formats match documentation requirements
# - Check that the selected endpoint actually solves the user's problem
# === RESPONSE FORMAT ===
# Provide your analysis and decision in this exact JSON structure:
# {{
# "reasoning": {{
# "user_intent": "Brief description of what the user wants to accomplish",
# "selected_endpoint": "Why this endpoint was chosen over others",
# "parameter_mapping": "How user query maps to endpoint parameters"
# }},
# "endpoint": "/exact_endpoint_path_from_documentation",
# "method": "HTTP_METHOD",
# "params": {{
# "required_param_1": "extracted_or_converted_value",
# "required_param_2": "extracted_or_converted_value",
# "optional_param": "value_if_applicable"
# }},
# "missing_required": ["list", "of", "missing", "required", "parameters"],
# "confidence": 0.95
# }}
# === CRITICAL RULES ===
# 1. ONLY select endpoints that exist in the provided documentation
# 2. NEVER fabricate or assume endpoint parameters not in documentation
# 3. ALL required parameters MUST be included or listed as missing
# 4. Convert dates/times to ISO 8601 format (YYYY-MM-DDTHH:MM:SS)
# 5. If patient_id is required and not provided, add it to missing_required
# 6. Match endpoints by PURPOSE, not just keywords in the path
# 7. If multiple endpoints could work, choose the most specific one
# 8. If no endpoint matches, set endpoint to null and explain in reasoning
# === EXAMPLES OF GOOD MATCHING ===
# - User wants "patient records" → Use patient retrieval endpoint, not general search
# - User wants to "schedule appointment" → Use appointment creation endpoint
# - User asks "what appointments today" → Use appointment listing with date filter
# - User wants to "update medication" → Use medication update endpoint with patient_id
# Think step by step and be precise with your endpoint selection and parameter extraction.:""",
# input_variables=["endpoints_documentation", "user_query", "detected_language",
# "extracted_keywords", "sentiment_analysis", "conversation_history"]
# )
# Conversational response prompt
self.conversation_template = PromptTemplate(
template="""
You are a friendly and professional healthcare chatbot assistant.
=== RESPONSE GUIDELINES ===
- Respond ONLY in {detected_language}
- Be helpful, empathetic, and professional
- Keep responses concise but informative
- Use appropriate medical terminology when needed
- Maintain a caring and supportive tone
=== CONTEXT ===
User Message: {user_query}
Language: {detected_language}
Sentiment: {sentiment_analysis}
Conversation History: {conversation_history}
=== LANGUAGE-SPECIFIC INSTRUCTIONS ===
FOR ARABIC RESPONSES:
- Use Modern Standard Arabic (الفصحى)
- Be respectful and formal as appropriate in Arabic culture
- Use proper Arabic medical terminology
- Keep sentences clear and grammatically correct
FOR ENGLISH RESPONSES:
- Use clear, professional English
- Be warm and approachable
- Use appropriate medical terminology
=== RESPONSE RULES ===
1. Address the user's question or comment directly
2. Provide helpful information when possible
3. If you cannot help with something specific, explain what you CAN help with
4. Never provide specific medical advice - always recommend consulting healthcare professionals
5. Be encouraging and supportive
6. Do NOT mix languages in your response
7. End responses naturally without asking multiple questions
Generate a helpful conversational response:""",
input_variables=["user_query", "detected_language", "sentiment_analysis", "conversation_history"]
)
# API response formatting prompt (reuse existing user_response_template)
self.user_response_template = PromptTemplate(
template="""
You are a professional healthcare assistant. Answer the user's question using the provided API data.
User Query: {user_query}
User Sentiment: {sentiment_analysis}
Response Language: {detected_language}
API Response Data:
{api_response}
=== INSTRUCTIONS ===
1. Read and understand the API response data above
2. Use ONLY the actual data from the API response - never make up information
3. Respond in {detected_language} language only
4. Write like you're talking to a friend or family member - warm, friendly, and caring
5. Make it sound natural and conversational, not like a system message
6. Convert technical data to simple, everyday language
=== DATE AND TIME FORMATTING ===
When you see date_time fields like '2025-05-30T10:28:10':
- For English: Convert to "May 30, 2025 at 10:28 AM"
- For Arabic: Convert to "٣٠ مايو ٢٠٢٥ في الساعة ١٠:٢٨ صباحاً"
=== RESPONSE EXAMPLES ===
For appointment confirmations:
- English: "Great! I've got your appointment set up for May 30, 2025 at 10:28 AM. Everything looks good!"
- Arabic: "ممتاز! موعدك محجوز يوم ٣٠ مايو ٢٠٢٥ الساعة ١٠:٢٨ صباحاً. كل شيء جاهز!"
For appointment info:
- English: "Your next appointment is on May 30, 2025 at 10:28 AM. See you then!"
- Arabic: "موعدك القادم يوم ٣٠ مايو ٢٠٢٥ الساعة ١٠:٢٨ صباحاً. نراك قريباً!"
=== TONE GUIDELINES ===
- Use friendly words like: "Great!", "Perfect!", "All set!", "ممتاز!", "رائع!", "تمام!"
- Add reassuring phrases: "Everything looks good", "You're all set", "كل شيء جاهز", "تم بنجاح"
- Sound helpful and caring, not robotic or formal
=== LANGUAGE FORMATTING ===
For Arabic responses:
- Use Arabic numerals: ٠١٢٣٤٥٦٧٨٩
- Use Arabic month names: يناير، فبراير، مارس، أبريل، مايو، يونيو، يوليو، أغسطس، سبتمبر، أكتوبر، نوفمبر، ديسمبر
- Friendly, warm Arabic tone
For English responses:
- Use standard English numerals
- 12-hour time format with AM/PM
- Friendly, conversational English tone
=== CRITICAL RULES ===
- Extract dates and times exactly as they appear in the API response
- Never use example dates or placeholder information
- Respond only in the specified language
- Make your response sound like a helpful friend, not a computer
- Focus on answering the user's specific question with warmth and care
Generate a friendly, helpful response using the API data provided above.
""",
input_variables=["user_query", "api_response", "detected_language", "sentiment_analysis"]
)
# self.user_response_template = PromptTemplate(
# template="""
# You are a professional healthcare assistant. Your task is to carefully analyze the API data and respond to the user's question accurately.
# User Query: {user_query}
# User Sentiment: {sentiment_analysis}
# Response Language: {detected_language}
# API Response Data:
# {api_response}
# === CRITICAL INSTRUCTIONS ===
# 1. FIRST: Carefully read and analyze the API response data above
# 2. SECOND: Identify all date_time fields in the format 'YYYY-MM-DDTHH:MM:SS'
# 3. THIRD: Extract the EXACT dates and times from the API response - DO NOT use any example dates
# 4. FOURTH: Convert these extracted dates to the user-friendly format specified below
# 5. FIFTH: Respond ONLY in {detected_language} language
# 6. Use a warm, friendly, conversational tone like talking to a friend
# === DATE EXTRACTION AND CONVERSION ===
# Step 1: Find date_time fields in the API response (format: 'YYYY-MM-DDTHH:MM:SS')
# Step 2: Convert ONLY the actual extracted dates using these rules:
# For English:
# - Convert 'YYYY-MM-DDTHH:MM:SS' to readable format
# - Example: '2025-06-01T08:00:00' becomes "June 1, 2025 at 8:00 AM"
# - Use 12-hour format with AM/PM
# For Arabic:
# - Convert to Arabic numerals and month names
# - Example: '2025-06-01T08:00:00' becomes "١ يونيو ٢٠٢٥ في الساعة ٨:٠٠ صباحاً"
# - Arabic months: يناير، فبراير، مارس، أبريل، مايو، يونيو، يوليو، أغسطس، سبتمبر، أكتوبر، نوفمبر، ديسمبر
# - Arabic numerals: ٠١٢٣٤٥٦٧٨٩
# === RESPONSE APPROACH ===
# 1. Analyze what the user is asking for
# 2. Find the relevant information in the API response
# 3. Extract actual dates/times from the API data
# 4. Convert technical information to simple language
# 5. Respond warmly and helpfully
# === TONE AND LANGUAGE ===
# English responses:
# - Use phrases like: "Great!", "Perfect!", "All set!", "Here's what I found:"
# - Be conversational and reassuring
# Arabic responses:
# - Use phrases like: "ممتاز!", "رائع!", "تمام!", "إليك ما وجدته:"
# - Be warm and helpful in Arabic style
# === IMPORTANT REMINDERS ===
# - NEVER use example dates from this prompt
# - ALWAYS extract dates from the actual API response data
# - If no dates exist in API response, don't mention any dates
# - Stay focused on answering the user's specific question
# - Use only information that exists in the API response
# Now, carefully analyze the API response above and generate a helpful response to the user's query using ONLY the actual data provided.
# """,
# input_variables=["user_query", "api_response", "detected_language", "sentiment_analysis"]
# )
# Create chains
self.intent_chain = LLMChain(llm=self.llm, prompt=self.intent_classifier_template)
self.router_chain = LLMChain(llm=self.llm, prompt=self.router_prompt_template)
self.conversation_chain = LLMChain(llm=self.llm, prompt=self.conversation_template)
self.api_response_chain = LLMChain(llm=self.llm, prompt=self.user_response_template)
def detect_language(self, text):
"""Detect language of the input text"""
if self.language_classifier and len(text.strip()) > 3:
try:
result = self.language_classifier(text)
detected_lang = result[0][0]['label']
confidence = result[0][0]['score']
if detected_lang in ['ar', 'arabic']:
return "arabic"
elif detected_lang in ['en', 'english']:
return "english"
elif confidence > 0.8:
return "english" # Default to English for unsupported languages
except:
pass
# Fallback: Basic Arabic detection
arabic_pattern = re.compile(r'[\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF]+')
if arabic_pattern.search(text):
return "arabic"
return "english"
def analyze_sentiment(self, text):
"""Analyze sentiment of the text"""
if self.sentiment_analyzer and len(text.strip()) > 3:
try:
result = self.sentiment_analyzer(text)
return {
"sentiment": result[0]['label'],
"score": result[0]['score']
}
except:
pass
return {"sentiment": "NEUTRAL", "score": 0.5}
def extract_keywords(self, text):
"""Extract keywords from text"""
# Simple keyword extraction
words = re.findall(r'\b\w+\b', text.lower())
# Filter out common words and keep meaningful ones
stopwords = {'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were'}
keywords = [w for w in words if len(w) > 3 and w not in stopwords]
return list(set(keywords))[:5] # Return top 5 unique keywords
def get_conversation_context(self):
"""Get recent conversation history as context"""
if not self.conversation_history:
return "No previous conversation"
context = []
for item in self.conversation_history[-3:]: # Last 3 exchanges
context.append(f"User: {item['user_message']}")
context.append(f"Bot: {item['bot_response'][:100]}...") # Truncate long responses
return " | ".join(context)
def add_to_history(self, user_message, bot_response, response_type):
"""Add exchange to conversation history"""
self.conversation_history.append({
'timestamp': datetime.now(),
'user_message': user_message,
'bot_response': bot_response,
'response_type': response_type
})
# Keep only recent history
if len(self.conversation_history) > self.max_history_length:
self.conversation_history = self.conversation_history[-self.max_history_length:]
def classify_intent(self, user_query, detected_language):
"""Classify if the user query requires API action or is conversational"""
try:
result = self.intent_chain.invoke({
"user_query": user_query,
"detected_language": detected_language,
"conversation_history": self.get_conversation_context(),
"endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2)
})
# Parse the JSON response
intent_text = result["text"]
# Clean and parse JSON
cleaned_response = re.sub(r'//.*?$', '', intent_text, flags=re.MULTILINE)
cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
try:
intent_data = json.loads(cleaned_response)
return intent_data
except json.JSONDecodeError:
# Try to extract JSON from the response
json_match = re.search(r'\{.*?\}', cleaned_response, re.DOTALL)
if json_match:
intent_data = json.loads(json_match.group(0))
return intent_data
else:
# Default classification if parsing fails
return {
"intent": "CONVERSATION",
"confidence": 0.5,
"reasoning": "Failed to parse LLM response",
"requires_backend": False
}
except Exception as e:
print(f"Error in intent classification: {e}")
return {
"intent": "CONVERSATION",
"confidence": 0.5,
"reasoning": f"Error in classification: {str(e)}",
"requires_backend": False
}
def handle_conversation(self, user_query, detected_language, sentiment_result):
"""Handle conversational responses"""
try:
result = self.conversation_chain.invoke({
"user_query": user_query,
"detected_language": detected_language,
"sentiment_analysis": json.dumps(sentiment_result),
"conversation_history": self.get_conversation_context()
})
return result["text"].strip()
except Exception as e:
# Fallback response
if detected_language == "arabic":
return "أعتذر، واجهت مشكلة في المعالجة. كيف يمكنني مساعدتك؟"
else:
return "I apologize, I encountered a processing issue. How can I help you?"
def backend_call(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Make API call to backend with retry logic"""
endpoint_url = data.get('endpoint')
endpoint_method = data.get('method')
endpoint_params = data.get('params', {}).copy()
print('Sending the api request')
print(f"🔗 Making API call to {endpoint_method} {self.BASE_URL + endpoint_url} with params: {endpoint_params}")
# Inject patient_id if needed
if 'patient_id' in endpoint_params:
endpoint_params['patient_id'] = self.user_id
retries = 0
response = None
while retries < self.max_retries:
try:
if endpoint_method.upper() == 'GET':
response = requests.get(
self.BASE_URL + endpoint_url,
params=endpoint_params,
headers=self.headers,
timeout=10
)
elif endpoint_method.upper() in ['POST', 'PUT', 'DELETE']:
response = requests.request(
endpoint_method.upper(),
self.BASE_URL + endpoint_url,
json=endpoint_params,
headers=self.headers,
timeout=10
)
response.raise_for_status()
print('Backend Response : ', response.json())
return response.json()
except requests.exceptions.RequestException as e:
retries += 1
if retries >= self.max_retries:
return {
"error": "Backend API call failed after multiple retries",
"details": str(e),
"status_code": getattr(e.response, 'status_code', None) if hasattr(e, 'response') else None
}
time.sleep(self.retry_delay)
def parse_relative_date(self, text, detected_language):
"""
Parse relative dates from text using a combination of methods
"""
today = datetime.now()
# Handle common relative date patterns in English and Arabic
tomorrow_patterns = {
'english': [r'\btomorrow\b', r'\bnext day\b'],
'arabic': [r'\bغدا\b', r'\bبكرة\b', r'\bغدًا\b', r'\bالغد\b']
}
next_week_patterns = {
'english': [r'\bnext week\b'],
'arabic': [r'\bالأسبوع القادم\b', r'\bالأسبوع المقبل\b', r'\bالاسبوع الجاي\b']
}
# Check for "tomorrow" patterns
for pattern in tomorrow_patterns.get(detected_language, []) + tomorrow_patterns.get('english', []):
if re.search(pattern, text, re.IGNORECASE):
return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
# Check for "next week" patterns
for pattern in next_week_patterns.get(detected_language, []) + next_week_patterns.get('english', []):
if re.search(pattern, text, re.IGNORECASE):
return (today + timedelta(days=7)).strftime('%Y-%m-%dT%H:%M:%S')
# If NER model is available, use it to extract date entities
if self.date_parser and detected_language == 'english':
try:
date_entities = self.date_parser(text)
for entity in date_entities:
if entity['entity_group'] == 'DATE':
# Here you would need more complex date parsing logic
# This is just a placeholder
print(f"Found date entity: {entity['word']}")
# For now, just default to tomorrow if we detect any date
return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
except Exception as e:
print(f"Error in date parsing: {e}")
# Default return None if no date pattern is recognized
return None
def handle_api_action(self, user_query, detected_language, sentiment_result, keywords):
"""Handle API-based actions"""
try:
# parsed_date = self.parse_relative_date(user_query, detected_language)
# if parsed_date:
# print(f"Parsed relative date: {parsed_date}")
# Route the query to determine API endpoint
router_result = self.router_chain.invoke({
"endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2),
"user_query": user_query,
"detected_language": detected_language,
"extracted_keywords": ", ".join(keywords),
"sentiment_analysis": json.dumps(sentiment_result),
"conversation_history": self.get_conversation_context(),
"current_datetime": datetime.now().strftime('%Y-%m-%dT%H:%M:%S'),
"timezone": "UTC",
"user_locale": "en-US"
})
# Parse router response
route_text = router_result["text"]
# cleaned_response = re.sub(r'//.*?$', '', route_text, flags=re.MULTILINE)
# cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
# cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
# try:
# parsed_route = json.loads(cleaned_response)
# except json.JSONDecodeError:
# json_match = re.search(r'\{.*?\}', cleaned_response, re.DOTALL)
# if json_match:
# parsed_route = json.loads(json_match.group(0))
# else:
# raise ValueError("Could not parse routing response")
# print(f"🔍 Parsed route: {parsed_route}")
cleaned_response = route_text
# Remove any comments (both single-line and multi-line)
cleaned_response = re.sub(r'//.*?$', '', cleaned_response, flags=re.MULTILINE)
cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
# Remove any trailing commas
cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
# Try different methods to parse the JSON response
try:
# First attempt: direct JSON parsing of cleaned response
parsed_route = json.loads(cleaned_response)
except json.JSONDecodeError:
try:
# Second attempt: extract JSON from markdown code block
json_match = re.search(r'```(?:json)?\s*(\{.*?\})\s*```', cleaned_response, re.DOTALL)
if json_match:
parsed_route = json.loads(json_match.group(1))
except (json.JSONDecodeError, AttributeError):
try:
# Third attempt: find JSON-like content using regex
json_pattern = r'\{\s*"endpoint"\s*:.*?\}'
json_match = re.search(json_pattern, cleaned_response, re.DOTALL)
if json_match:
json_str = json_match.group(0)
# Additional cleaning for the extracted JSON
json_str = re.sub(r'//.*?$', '', json_str, flags=re.MULTILINE)
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
parsed_route = json.loads(json_str)
except (json.JSONDecodeError, AttributeError):
print(f"Failed to parse JSON. Raw response: {route_text}")
print(f"Cleaned response: {cleaned_response}")
raise ValueError("Could not extract valid JSON from LLM response")
if not parsed_route:
raise ValueError("Failed to parse LLM response into valid JSON")
# Replace any placeholder values and inject parsed dates if available
if 'params' in parsed_route:
if 'patient_id' in parsed_route['params']:
parsed_route['params']['patient_id'] = self.user_id
else:
parsed_route['params']['patient_id'] = self.user_id
# Inject parsed date if available and a date parameter exists
# date_params = ['appointment_date', 'date', 'schedule_date', 'date_time', 'new_date_time']
# if parsed_date:
# for param in date_params:
# if param in parsed_route['params']:
# parsed_route['params'][param] = parsed_date
print('Parsed route: ', parsed_route)
# Make backend API call
api_response = self.backend_call(parsed_route)
print("🔗 API response received:", api_response)
# Generate user-friendly response
user_response_result = self.api_response_chain.invoke({
"user_query": user_query,
"api_response": json.dumps(api_response, indent=2),
"detected_language": detected_language,
"sentiment_analysis": json.dumps(sentiment_result),
})
print("🔗 API response:", user_response_result["text"].strip())
return {
"response": user_response_result["text"].strip(),
"api_data": api_response,
"routing_info": parsed_route
}
except Exception as e:
# Fallback error response
if detected_language == "arabic":
error_msg = "أعتذر، لم أتمكن من معالجة طلبك. يرجى المحاولة مرة أخرى أو صياغة السؤال بطريقة مختلفة."
else:
error_msg = "I apologize, I couldn't process your request. Please try again or rephrase your question."
return {
"response": error_msg,
"api_data": {"error": str(e)},
"routing_info": None
}
def chat(self, user_message: str) -> ChatResponse:
"""Main chat method that handles user messages"""
start_time = time.time()
# Check for exit commands
exit_commands = ['quit', 'exit', 'bye', 'خروج', 'وداعا', 'مع السلامة']
if user_message.lower().strip() in exit_commands:
return ChatResponse(
response_id=f"resp_{int(time.time())}",
response_type="conversation",
message="Goodbye! Take care of your health! / وداعاً! اعتن بصحتك!",
language="bilingual"
)
try:
# Language detection and analysis
detected_language = self.detect_language(user_message)
sentiment_result = self.analyze_sentiment(user_message)
keywords = self.extract_keywords(user_message)
print(f"🔍 Language: {detected_language} | Sentiment: {sentiment_result['sentiment']} | Keywords: {keywords}")
# Classify intent
intent_data = self.classify_intent(user_message, detected_language)
print(f"🎯 Intent: {intent_data['intent']} (confidence: {intent_data.get('confidence', 'N/A')})")
# Handle based on intent
if intent_data["intent"] == "API_ACTION" and intent_data.get("requires_backend", False):
# Handle API-based actions
print("🔗 Processing API action...")
action_result = self.handle_api_action(user_message, detected_language, sentiment_result, keywords)
# print(action_result)
response = ChatResponse(
response_id=f"resp_{int(time.time())}",
response_type="api_action",
message=action_result["response"],
api_call_made=True,
api_data=json.dumps(action_result["api_data"]) if 'action_result' in action_result else None,
language=detected_language
)
else:
# Handle conversational responses
print("💬 Processing conversational response...")
conv_response = self.handle_conversation(user_message, detected_language, sentiment_result)
response = ChatResponse(
response_id=f"resp_{int(time.time())}",
response_type="conversation",
message=conv_response,
api_call_made=False,
language=detected_language
)
# Add to conversation history
self.add_to_history(user_message, response.message, response.response_type)
print(f"⏱️ Processing time: {time.time() - start_time:.2f}s")
return response
except Exception as e:
print(f"❌ Error in chat processing: {e}")
error_msg = "I apologize for the technical issue. Please try again. / أعتذر عن المشكلة التقنية. يرجى المحاولة مرة أخرى."
return ChatResponse(
response_id=f"resp_{int(time.time())}",
response_type="conversation",
message=error_msg,
api_call_made=False,
language="bilingual"
)
def start_interactive_chat(self):
"""Start an interactive chat session"""
print("🚀 Starting interactive chat session...")
while True:
try:
# Get user input
user_input = input("\n👤 You: ").strip()
if not user_input:
continue
# Process the message
print("🤖 Processing...")
response = self.chat(user_input)
# Display response
print(f"\n🏥 Healthcare Bot: {response.message}")
# Show additional info if API call was made
if response.api_call_made and response.api_data:
if "error" not in response.api_data:
print("✅ Successfully retrieved information from healthcare system")
else:
print("⚠️ There was an issue accessing the healthcare system")
# Check for exit
if "Goodbye" in response.message or "وداعاً" in response.message:
break
except KeyboardInterrupt:
print("\n\n👋 Chat session ended. Goodbye!")
break
except Exception as e:
print(f"\n❌ Unexpected error: {e}")
print("The chat session will continue...")
# Create a simple function to start the chatbot
# def start_healthcare_chatbot():
# """Initialize and start the healthcare chatbot"""
# try:
# chatbot = HealthcareChatbot()
# chatbot.start_interactive_chat()
# except Exception as e:
# print(f"Failed to start chatbot: {e}")
# print("Please check your Ollama installation and endpoint documentation.")
# Test the chatbot
# if __name__ == "__main__":
# You can test individual messages like this:
# chatbot = HealthcareChatbot()
# Test conversational message
# print("\n=== TESTING CONVERSATIONAL MESSAGE ===")
# conv_response = chatbot.chat("Hello, how are you today?")
# print(f"Response: {conv_response.message}")
# print(f"Type: {conv_response.response_type}")
# Test API action message
# print("\n=== TESTING API ACTION MESSAGE ===")
# api_response = chatbot.chat("I want to book an appointment tomorrow at 2 PM")
# print(f"Response: {api_response.message}")
# print(f"Type: {api_response.response_type}")
# print(f"API Called: {api_response.api_call_made}")
# Start interactive session (uncomment to run)
# start_healthcare_chatbot()
# Fast api section
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Dict, Any, Optional
app = FastAPI(
title="Healthcare AI Assistant",
description="An AI-powered healthcare assistant that handles appointment booking and queries",
version="1.0.0"
)
# Initialize the AI agent
agent = HealthcareChatbot()
class QueryRequest(BaseModel):
query: str
class QueryResponse(BaseModel):
routing_info: Dict[str, Any]
api_response: Dict[str, Any]
user_friendly_response: str
detected_language: str
sentiment: Dict[str, Any]
@app.post("/query")
async def process_query(request: QueryRequest):
"""
Process a user query and return a response
"""
try:
response = agent.chat(request.query)
return response
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
"""
Health check endpoint
"""
return {"status": "healthy", "service": "healthcare-ai-assistant"}
@app.get("/")
async def root():
return {"message": "Hello World"}
# if __name__ == "__main__":
# import uvicorn
# uvicorn.run(app, host="0.0.0.0", port=8000)