Spaces:
Sleeping
Sleeping
File size: 52,605 Bytes
4d047b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 |
import re
import json
import requests
import traceback
import time
import os
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime, timedelta
# Updated imports for pydantic
from pydantic import BaseModel, Field
# Updated imports for LangChain
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_ollama import OllamaLLM
from langchain.chains import LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
# Enhanced HuggingFace imports for improved functionality
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import numpy as np
# Import endpoints documentation
from endpoints_documentation import endpoints_documentation
# Set environment variables for HuggingFace
# if os.name == 'posix' and os.uname().sysname == 'Darwin': # Check if running on macOS
# os.environ["HF_HOME"] = os.path.expanduser("~/Library/Caches/huggingface")
# os.environ["TRANSFORMERS_CACHE"] = os.path.expanduser("~/Library/Caches/huggingface/transformers")
# else:
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
class ChatMessage(BaseModel):
"""Data model for chat messages"""
message_id: str = Field(..., description="Unique identifier for the message")
user_id: str = Field(..., description="User identifier")
message: str = Field(..., description="The user's message")
timestamp: datetime = Field(default_factory=datetime.now, description="When the message was sent")
language: str = Field(default="english", description="Detected language of the message")
class ChatResponse(BaseModel):
"""Data model for chatbot responses"""
response_id: str = Field(..., description="Unique identifier for the response")
response_type: str = Field(..., description="Type of response: 'conversation' or 'api_action'")
message: str = Field(..., description="The chatbot's response message")
api_call_made: bool = Field(default=False, description="Whether an API call was made")
api_data: Optional[Dict[str, Any]] = Field(default=None, description="API response data if applicable")
language: str = Field(default="english", description="Language of the response")
timestamp: datetime = Field(default_factory=datetime.now, description="When the response was generated")
class EndpointRequest(BaseModel):
"""Data model for API endpoint requests"""
endpoint: str = Field(..., description="The API endpoint path to call")
method: str = Field(..., description="The HTTP method to use (GET or POST)")
params: Dict[str, Any] = Field(default_factory=dict, description="Parameters for the API call")
missing_required: List[str] = Field(default_factory=list, description="Any required parameters that are missing")
class HealthcareChatbot:
def __init__(self):
self.endpoints_documentation = endpoints_documentation
self.ollama_base_url = "http://localhost:11434"
self.model_name = "gemma3"
self.BASE_URL = 'https://f376-197-54-54-66.ngrok-free.app'
self.headers = {'Content-type': 'application/json'}
self.user_id = '86639f4c-5dfc-441d-b229-084f0fcdd748'
self.max_retries = 3
self.retry_delay = 2
# Store conversation history
self.conversation_history = []
self.max_history_length = 10 # Keep last 10 exchanges
# Initialize components
self._initialize_language_tools()
self._initialize_llm()
self._initialize_parsers_and_chains()
self._initialize_date_parser()
print("Healthcare Chatbot initialized successfully!")
self._print_welcome_message()
def _print_welcome_message(self):
"""Print welcome message in both languages"""
print("\n" + "="*60)
print("🏥 HEALTHCARE CHATBOT READY")
print("="*60)
print("English: Hello! I'm your healthcare assistant. I can help you with:")
print("• Booking and managing appointments")
print("• Finding hospital information")
print("• Viewing your medical records")
print("• General healthcare questions")
print()
print("Arabic: مرحباً! أنا مساعدك الطبي. يمكنني مساعدتك في:")
print("• حجز وإدارة المواعيد")
print("• العثور على معلومات المستشفى")
print("• عرض سجلاتك الطبية")
print("• الأسئلة الطبية العامة")
print("="*60)
print("Type 'quit' or 'خروج' to exit\n")
def _initialize_language_tools(self):
"""Initialize language processing tools"""
try:
self.embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
self.language_classifier = pipeline(
"text-classification",
model="papluca/xlm-roberta-base-language-detection",
top_k=1
)
self.sentiment_analyzer = pipeline(
"sentiment-analysis",
model="cardiffnlp/twitter-xlm-roberta-base-sentiment"
)
print("✓ Language processing models loaded successfully")
except Exception as e:
print(f"⚠ Warning: Some language models failed to load: {e}")
self.language_classifier = None
self.sentiment_analyzer = None
def _initialize_date_parser(self):
"""Initialize date parsing model"""
try:
self.date_parser = pipeline(
"token-classification",
model="Jean-Baptiste/roberta-large-ner-english",
aggregation_strategy="simple"
)
except Exception as e:
print(f"⚠ Warning: Date parsing model failed to load: {e}")
self.date_parser = None
def _initialize_llm(self):
"""Initialize the LLM"""
callbacks = [StreamingStdOutCallbackHandler()]
self.llm = OllamaLLM(
model=self.model_name,
base_url=self.ollama_base_url,
callbacks=callbacks,
temperature=0.7,
num_ctx=8192,
top_p=0.9,
request_timeout=60,
)
def _initialize_parsers_and_chains(self):
"""Initialize all prompt templates and chains"""
self.json_parser = JsonOutputParser(pydantic_object=EndpointRequest)
# Intent classification prompt
# self.intent_classifier_template = PromptTemplate(
# template="""
# You are an intent classifier. Your job is simple: understand what the user wants and check if any API endpoint can do that.
# User Message: {user_query}
# Language: {detected_language}
# API Endpoints: {endpoints_documentation}
# Think step by step:
# 1. What does the user want from this message?
# Read the user's message carefully. What is the user trying to say or accomplish? What would a human understand from this message?
# 2. Can any API endpoint fulfill what the user wants?
# Look at each API endpoint. Does any endpoint do what the user is asking for? Be very precise - only say yes if there's a clear match.
# Important rules:
# - Focus ONLY on the current message, ignore conversation history for classification
# - If the user is just talking, being social, or saying something casual, that's CONVERSATION
# - Only choose API_ACTION if the user is clearly asking for something an API endpoint can do
# - When you're not sure, choose CONVERSATION
# Answer in this format:
# {{
# "intent": "API_ACTION" or "CONVERSATION",
# "confidence": [0.0 to 1.0],
# "reasoning": "What does the user want? Can any API do this?",
# "requires_backend": true or false
# }}
# """,
# input_variables=["user_query", "detected_language", "conversation_history", "endpoints_documentation"]
# )
self.intent_classifier_template = PromptTemplate(
template="""
You are a strict intent classification system. Your only task is to determine if the user message requires an API action or is general conversation.
=== ABSOLUTE RULES ===
1. OUTPUT FORMAT MUST BE EXACTLY:
{{
"intent": "API_ACTION" or "CONVERSATION",
"confidence": 0.0-1.0,
"reasoning": "clear justification",
"requires_backend": true or false
}}
2. Never invent custom intent types
3. Never output endpoint names in the intent field
4. "requires_backend" must match the intent (true for API_ACTION)
=== CLASSIFICATION CRITERIA ===
API_ACTION must meet ALL of:
- The message contains a clear, actionable request
- The request matches a documented API endpoint's purpose
- The request requires specific backend functionality
CONVERSATION applies when:
- The message is social/greeting/smalltalk
- The request is too vague for API action
- No API endpoint matches the request
=== INPUT DATA ===
User Message: {user_query}
Detected Language: {detected_language}
API Endpoints: {endpoints_documentation}
=== DECISION PROCESS ===
1. Analyze the message literally - what is the explicit request?
2. Check endpoints documentation - is there an exact functional match?
3. If uncertain, default to CONVERSATION
4. Validate against rules before responding
=== OUTPUT VALIDATION ===
Before responding, verify:
- Intent is ONLY "API_ACTION" or "CONVERSATION"
- Confidence reflects certainty (1.0 = perfect match)
- Reasoning explains the endpoint match (for API_ACTION)
- requires_backend aligns with intent
Respond ONLY in the exact specified format.
""",
input_variables=["user_query", "detected_language", "conversation_history", "endpoints_documentation"]
)
# API routing prompt (reuse existing router_prompt_template)
self.router_prompt_template = PromptTemplate(
template="""
You are a precise API routing assistant. Your job is to analyze user queries and select the correct API endpoint with proper parameters.
=== ENDPOINT DOCUMENTATION ===
{endpoints_documentation}
=== USER REQUEST ANALYSIS ===
User Query: {user_query}
Language: {detected_language}
Keywords: {extracted_keywords}
Sentiment: {sentiment_analysis}
Current Context:
- DateTime: {current_datetime}
- Timezone: {timezone}
- User Locale: {user_locale}
=== ROUTING PROCESS ===
Follow these steps in order:
STEP 1: INTENT ANALYSIS
- What is the user trying to accomplish?
- What type of operation are they requesting? (create, read, update, delete, search, etc.)
- What entity/resource are they working with?
STEP 2: DATE/TIME PROCESSING
- Identify any temporal expressions in the user query
- Convert relative dates/times using the current context:
* "اليوم" (today) = current date
* "غدا" (tomorrow) = current date + 1 day
* "أمس" (yesterday) = current date - 1 day
* "الأسبوع القادم" (next week) = current date + 7 days
* "بعد ساعتين" (in 2 hours) = current time + 2 hours
* "صباحًا" (morning/AM), "مساءً" (evening/PM)
- Handle different date formats and languages
- Account for timezone differences
- Convert to ISO 8601 format: YYYY-MM-DDTHH:MM:SS
STEP 3: ENDPOINT MATCHING
- Review each endpoint in the documentation
- Match the user's intent to the endpoint's PURPOSE/DESCRIPTION
- Consider the HTTP method (GET for retrieval, POST for creation, etc.)
- Verify the endpoint can handle the user's specific request
STEP 4: PARAMETER EXTRACTION
- Identify ALL required parameters from the endpoint documentation
- Extract parameter values from the user query
- Convert data types as needed:
- Dates/times to ISO 8601 format (YYYY-MM-DDTHH:mm:ss)
- Numbers to integers
- Set appropriate defaults for optional parameters if beneficial
STEP 5: VALIDATION
- Ensure ALL required parameters are provided or identified as missing
- Verify parameter formats match documentation requirements
- Check that the selected endpoint actually solves the user's problem
=== RESPONSE FORMAT ===
Provide your analysis and decision in this exact JSON structure:
{{
"reasoning": {{
"user_intent": "Brief description of what the user wants to accomplish",
"selected_endpoint": "Why this endpoint was chosen over others",
"parameter_mapping": "How user query maps to endpoint parameters"
}},
"endpoint": "/exact_endpoint_path_from_documentation",
"method": "HTTP_METHOD",
"params": {{
"required_param_1": "extracted_or_converted_value",
"required_param_2": "extracted_or_converted_value",
"optional_param": "value_if_applicable"
}},
"missing_required": ["list", "of", "missing", "required", "parameters"],
"confidence": 0.95
}}
=== CRITICAL RULES ===
1. ONLY select endpoints that exist in the provided documentation
2. NEVER fabricate or assume endpoint parameters not in documentation
3. ALL required parameters MUST be included or listed as missing
4. Convert dates/times to ISO 8601 format (YYYY-MM-DDTHH:mm:ss)
5. If patient_id is required and not provided, add it to missing_required
6. Match endpoints by PURPOSE, not just keywords in the path
7. If multiple endpoints could work, choose the most specific one
8. If no endpoint matches, set endpoint to null and explain in reasoning
=== EXAMPLES OF GOOD MATCHING ===
- User wants "patient records" → Use patient retrieval endpoint, not general search
- User wants to "schedule appointment" → Use appointment creation endpoint
- User asks "what appointments today" → Use appointment listing with date filter
- User wants to "update medication" → Use medication update endpoint with patient_id
Think step by step and be precise with your endpoint selection and parameter extraction.:""",
input_variables=["endpoints_documentation", "user_query", "detected_language",
"extracted_keywords", "sentiment_analysis", "conversation_history",
"current_datetime", "timezone", "user_locale"]
)
# old one
# self.router_prompt_template = PromptTemplate(
# template="""
# You are a precise API routing assistant. Your job is to analyze user queries and select the correct API endpoint with proper parameters.
# === ENDPOINT DOCUMENTATION ===
# {endpoints_documentation}
# === USER REQUEST ANALYSIS ===
# User Query: {user_query}
# Language: {detected_language}
# Keywords: {extracted_keywords}
# Sentiment: {sentiment_analysis}
# === ROUTING PROCESS ===
# Follow these steps in order:
# STEP 1: INTENT ANALYSIS
# - What is the user trying to accomplish?
# - What type of operation are they requesting? (create, read, update, delete, search, etc.)
# - What entity/resource are they working with?
# STEP 2: ENDPOINT MATCHING
# - Review each endpoint in the documentation
# - Match the user's intent to the endpoint's PURPOSE/DESCRIPTION
# - Consider the HTTP method (GET for retrieval, POST for creation, etc.)
# - Verify the endpoint can handle the user's specific request
# STEP 3: PARAMETER EXTRACTION
# - Identify ALL required parameters from the endpoint documentation
# - Extract parameter values from the user query
# - Convert data types as needed (dates to ISO 8601, numbers to integers, etc.)
# - Set appropriate defaults for optional parameters if beneficial
# STEP 4: VALIDATION
# - Ensure ALL required parameters are provided or identified as missing
# - Verify parameter formats match documentation requirements
# - Check that the selected endpoint actually solves the user's problem
# === RESPONSE FORMAT ===
# Provide your analysis and decision in this exact JSON structure:
# {{
# "reasoning": {{
# "user_intent": "Brief description of what the user wants to accomplish",
# "selected_endpoint": "Why this endpoint was chosen over others",
# "parameter_mapping": "How user query maps to endpoint parameters"
# }},
# "endpoint": "/exact_endpoint_path_from_documentation",
# "method": "HTTP_METHOD",
# "params": {{
# "required_param_1": "extracted_or_converted_value",
# "required_param_2": "extracted_or_converted_value",
# "optional_param": "value_if_applicable"
# }},
# "missing_required": ["list", "of", "missing", "required", "parameters"],
# "confidence": 0.95
# }}
# === CRITICAL RULES ===
# 1. ONLY select endpoints that exist in the provided documentation
# 2. NEVER fabricate or assume endpoint parameters not in documentation
# 3. ALL required parameters MUST be included or listed as missing
# 4. Convert dates/times to ISO 8601 format (YYYY-MM-DDTHH:MM:SS)
# 5. If patient_id is required and not provided, add it to missing_required
# 6. Match endpoints by PURPOSE, not just keywords in the path
# 7. If multiple endpoints could work, choose the most specific one
# 8. If no endpoint matches, set endpoint to null and explain in reasoning
# === EXAMPLES OF GOOD MATCHING ===
# - User wants "patient records" → Use patient retrieval endpoint, not general search
# - User wants to "schedule appointment" → Use appointment creation endpoint
# - User asks "what appointments today" → Use appointment listing with date filter
# - User wants to "update medication" → Use medication update endpoint with patient_id
# Think step by step and be precise with your endpoint selection and parameter extraction.:""",
# input_variables=["endpoints_documentation", "user_query", "detected_language",
# "extracted_keywords", "sentiment_analysis", "conversation_history"]
# )
# Conversational response prompt
self.conversation_template = PromptTemplate(
template="""
You are a friendly and professional healthcare chatbot assistant.
=== RESPONSE GUIDELINES ===
- Respond ONLY in {detected_language}
- Be helpful, empathetic, and professional
- Keep responses concise but informative
- Use appropriate medical terminology when needed
- Maintain a caring and supportive tone
=== CONTEXT ===
User Message: {user_query}
Language: {detected_language}
Sentiment: {sentiment_analysis}
Conversation History: {conversation_history}
=== LANGUAGE-SPECIFIC INSTRUCTIONS ===
FOR ARABIC RESPONSES:
- Use Modern Standard Arabic (الفصحى)
- Be respectful and formal as appropriate in Arabic culture
- Use proper Arabic medical terminology
- Keep sentences clear and grammatically correct
FOR ENGLISH RESPONSES:
- Use clear, professional English
- Be warm and approachable
- Use appropriate medical terminology
=== RESPONSE RULES ===
1. Address the user's question or comment directly
2. Provide helpful information when possible
3. If you cannot help with something specific, explain what you CAN help with
4. Never provide specific medical advice - always recommend consulting healthcare professionals
5. Be encouraging and supportive
6. Do NOT mix languages in your response
7. End responses naturally without asking multiple questions
Generate a helpful conversational response:""",
input_variables=["user_query", "detected_language", "sentiment_analysis", "conversation_history"]
)
# API response formatting prompt (reuse existing user_response_template)
self.user_response_template = PromptTemplate(
template="""
You are a professional healthcare assistant. Answer the user's question using the provided API data.
User Query: {user_query}
User Sentiment: {sentiment_analysis}
Response Language: {detected_language}
API Response Data:
{api_response}
=== INSTRUCTIONS ===
1. Read and understand the API response data above
2. Use ONLY the actual data from the API response - never make up information
3. Respond in {detected_language} language only
4. Write like you're talking to a friend or family member - warm, friendly, and caring
5. Make it sound natural and conversational, not like a system message
6. Convert technical data to simple, everyday language
=== DATE AND TIME FORMATTING ===
When you see date_time fields like '2025-05-30T10:28:10':
- For English: Convert to "May 30, 2025 at 10:28 AM"
- For Arabic: Convert to "٣٠ مايو ٢٠٢٥ في الساعة ١٠:٢٨ صباحاً"
=== RESPONSE EXAMPLES ===
For appointment confirmations:
- English: "Great! I've got your appointment set up for May 30, 2025 at 10:28 AM. Everything looks good!"
- Arabic: "ممتاز! موعدك محجوز يوم ٣٠ مايو ٢٠٢٥ الساعة ١٠:٢٨ صباحاً. كل شيء جاهز!"
For appointment info:
- English: "Your next appointment is on May 30, 2025 at 10:28 AM. See you then!"
- Arabic: "موعدك القادم يوم ٣٠ مايو ٢٠٢٥ الساعة ١٠:٢٨ صباحاً. نراك قريباً!"
=== TONE GUIDELINES ===
- Use friendly words like: "Great!", "Perfect!", "All set!", "ممتاز!", "رائع!", "تمام!"
- Add reassuring phrases: "Everything looks good", "You're all set", "كل شيء جاهز", "تم بنجاح"
- Sound helpful and caring, not robotic or formal
=== LANGUAGE FORMATTING ===
For Arabic responses:
- Use Arabic numerals: ٠١٢٣٤٥٦٧٨٩
- Use Arabic month names: يناير، فبراير، مارس، أبريل، مايو، يونيو، يوليو، أغسطس، سبتمبر، أكتوبر، نوفمبر، ديسمبر
- Friendly, warm Arabic tone
For English responses:
- Use standard English numerals
- 12-hour time format with AM/PM
- Friendly, conversational English tone
=== CRITICAL RULES ===
- Extract dates and times exactly as they appear in the API response
- Never use example dates or placeholder information
- Respond only in the specified language
- Make your response sound like a helpful friend, not a computer
- Focus on answering the user's specific question with warmth and care
Generate a friendly, helpful response using the API data provided above.
""",
input_variables=["user_query", "api_response", "detected_language", "sentiment_analysis"]
)
# self.user_response_template = PromptTemplate(
# template="""
# You are a professional healthcare assistant. Your task is to carefully analyze the API data and respond to the user's question accurately.
# User Query: {user_query}
# User Sentiment: {sentiment_analysis}
# Response Language: {detected_language}
# API Response Data:
# {api_response}
# === CRITICAL INSTRUCTIONS ===
# 1. FIRST: Carefully read and analyze the API response data above
# 2. SECOND: Identify all date_time fields in the format 'YYYY-MM-DDTHH:MM:SS'
# 3. THIRD: Extract the EXACT dates and times from the API response - DO NOT use any example dates
# 4. FOURTH: Convert these extracted dates to the user-friendly format specified below
# 5. FIFTH: Respond ONLY in {detected_language} language
# 6. Use a warm, friendly, conversational tone like talking to a friend
# === DATE EXTRACTION AND CONVERSION ===
# Step 1: Find date_time fields in the API response (format: 'YYYY-MM-DDTHH:MM:SS')
# Step 2: Convert ONLY the actual extracted dates using these rules:
# For English:
# - Convert 'YYYY-MM-DDTHH:MM:SS' to readable format
# - Example: '2025-06-01T08:00:00' becomes "June 1, 2025 at 8:00 AM"
# - Use 12-hour format with AM/PM
# For Arabic:
# - Convert to Arabic numerals and month names
# - Example: '2025-06-01T08:00:00' becomes "١ يونيو ٢٠٢٥ في الساعة ٨:٠٠ صباحاً"
# - Arabic months: يناير، فبراير، مارس، أبريل، مايو، يونيو، يوليو، أغسطس، سبتمبر، أكتوبر، نوفمبر، ديسمبر
# - Arabic numerals: ٠١٢٣٤٥٦٧٨٩
# === RESPONSE APPROACH ===
# 1. Analyze what the user is asking for
# 2. Find the relevant information in the API response
# 3. Extract actual dates/times from the API data
# 4. Convert technical information to simple language
# 5. Respond warmly and helpfully
# === TONE AND LANGUAGE ===
# English responses:
# - Use phrases like: "Great!", "Perfect!", "All set!", "Here's what I found:"
# - Be conversational and reassuring
# Arabic responses:
# - Use phrases like: "ممتاز!", "رائع!", "تمام!", "إليك ما وجدته:"
# - Be warm and helpful in Arabic style
# === IMPORTANT REMINDERS ===
# - NEVER use example dates from this prompt
# - ALWAYS extract dates from the actual API response data
# - If no dates exist in API response, don't mention any dates
# - Stay focused on answering the user's specific question
# - Use only information that exists in the API response
# Now, carefully analyze the API response above and generate a helpful response to the user's query using ONLY the actual data provided.
# """,
# input_variables=["user_query", "api_response", "detected_language", "sentiment_analysis"]
# )
# Create chains
self.intent_chain = LLMChain(llm=self.llm, prompt=self.intent_classifier_template)
self.router_chain = LLMChain(llm=self.llm, prompt=self.router_prompt_template)
self.conversation_chain = LLMChain(llm=self.llm, prompt=self.conversation_template)
self.api_response_chain = LLMChain(llm=self.llm, prompt=self.user_response_template)
def detect_language(self, text):
"""Detect language of the input text"""
if self.language_classifier and len(text.strip()) > 3:
try:
result = self.language_classifier(text)
detected_lang = result[0][0]['label']
confidence = result[0][0]['score']
if detected_lang in ['ar', 'arabic']:
return "arabic"
elif detected_lang in ['en', 'english']:
return "english"
elif confidence > 0.8:
return "english" # Default to English for unsupported languages
except:
pass
# Fallback: Basic Arabic detection
arabic_pattern = re.compile(r'[\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF]+')
if arabic_pattern.search(text):
return "arabic"
return "english"
def analyze_sentiment(self, text):
"""Analyze sentiment of the text"""
if self.sentiment_analyzer and len(text.strip()) > 3:
try:
result = self.sentiment_analyzer(text)
return {
"sentiment": result[0]['label'],
"score": result[0]['score']
}
except:
pass
return {"sentiment": "NEUTRAL", "score": 0.5}
def extract_keywords(self, text):
"""Extract keywords from text"""
# Simple keyword extraction
words = re.findall(r'\b\w+\b', text.lower())
# Filter out common words and keep meaningful ones
stopwords = {'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were'}
keywords = [w for w in words if len(w) > 3 and w not in stopwords]
return list(set(keywords))[:5] # Return top 5 unique keywords
def get_conversation_context(self):
"""Get recent conversation history as context"""
if not self.conversation_history:
return "No previous conversation"
context = []
for item in self.conversation_history[-3:]: # Last 3 exchanges
context.append(f"User: {item['user_message']}")
context.append(f"Bot: {item['bot_response'][:100]}...") # Truncate long responses
return " | ".join(context)
def add_to_history(self, user_message, bot_response, response_type):
"""Add exchange to conversation history"""
self.conversation_history.append({
'timestamp': datetime.now(),
'user_message': user_message,
'bot_response': bot_response,
'response_type': response_type
})
# Keep only recent history
if len(self.conversation_history) > self.max_history_length:
self.conversation_history = self.conversation_history[-self.max_history_length:]
def classify_intent(self, user_query, detected_language):
"""Classify if the user query requires API action or is conversational"""
try:
result = self.intent_chain.invoke({
"user_query": user_query,
"detected_language": detected_language,
"conversation_history": self.get_conversation_context(),
"endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2)
})
# Parse the JSON response
intent_text = result["text"]
# Clean and parse JSON
cleaned_response = re.sub(r'//.*?$', '', intent_text, flags=re.MULTILINE)
cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
try:
intent_data = json.loads(cleaned_response)
return intent_data
except json.JSONDecodeError:
# Try to extract JSON from the response
json_match = re.search(r'\{.*?\}', cleaned_response, re.DOTALL)
if json_match:
intent_data = json.loads(json_match.group(0))
return intent_data
else:
# Default classification if parsing fails
return {
"intent": "CONVERSATION",
"confidence": 0.5,
"reasoning": "Failed to parse LLM response",
"requires_backend": False
}
except Exception as e:
print(f"Error in intent classification: {e}")
return {
"intent": "CONVERSATION",
"confidence": 0.5,
"reasoning": f"Error in classification: {str(e)}",
"requires_backend": False
}
def handle_conversation(self, user_query, detected_language, sentiment_result):
"""Handle conversational responses"""
try:
result = self.conversation_chain.invoke({
"user_query": user_query,
"detected_language": detected_language,
"sentiment_analysis": json.dumps(sentiment_result),
"conversation_history": self.get_conversation_context()
})
return result["text"].strip()
except Exception as e:
# Fallback response
if detected_language == "arabic":
return "أعتذر، واجهت مشكلة في المعالجة. كيف يمكنني مساعدتك؟"
else:
return "I apologize, I encountered a processing issue. How can I help you?"
def backend_call(self, data: Dict[str, Any]) -> Dict[str, Any]:
"""Make API call to backend with retry logic"""
endpoint_url = data.get('endpoint')
endpoint_method = data.get('method')
endpoint_params = data.get('params', {}).copy()
print('Sending the api request')
print(f"🔗 Making API call to {endpoint_method} {self.BASE_URL + endpoint_url} with params: {endpoint_params}")
# Inject patient_id if needed
if 'patient_id' in endpoint_params:
endpoint_params['patient_id'] = self.user_id
retries = 0
response = None
while retries < self.max_retries:
try:
if endpoint_method.upper() == 'GET':
response = requests.get(
self.BASE_URL + endpoint_url,
params=endpoint_params,
headers=self.headers,
timeout=10
)
elif endpoint_method.upper() in ['POST', 'PUT', 'DELETE']:
response = requests.request(
endpoint_method.upper(),
self.BASE_URL + endpoint_url,
json=endpoint_params,
headers=self.headers,
timeout=10
)
response.raise_for_status()
print('Backend Response : ', response.json())
return response.json()
except requests.exceptions.RequestException as e:
retries += 1
if retries >= self.max_retries:
return {
"error": "Backend API call failed after multiple retries",
"details": str(e),
"status_code": getattr(e.response, 'status_code', None) if hasattr(e, 'response') else None
}
time.sleep(self.retry_delay)
def parse_relative_date(self, text, detected_language):
"""
Parse relative dates from text using a combination of methods
"""
today = datetime.now()
# Handle common relative date patterns in English and Arabic
tomorrow_patterns = {
'english': [r'\btomorrow\b', r'\bnext day\b'],
'arabic': [r'\bغدا\b', r'\bبكرة\b', r'\bغدًا\b', r'\bالغد\b']
}
next_week_patterns = {
'english': [r'\bnext week\b'],
'arabic': [r'\bالأسبوع القادم\b', r'\bالأسبوع المقبل\b', r'\bالاسبوع الجاي\b']
}
# Check for "tomorrow" patterns
for pattern in tomorrow_patterns.get(detected_language, []) + tomorrow_patterns.get('english', []):
if re.search(pattern, text, re.IGNORECASE):
return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
# Check for "next week" patterns
for pattern in next_week_patterns.get(detected_language, []) + next_week_patterns.get('english', []):
if re.search(pattern, text, re.IGNORECASE):
return (today + timedelta(days=7)).strftime('%Y-%m-%dT%H:%M:%S')
# If NER model is available, use it to extract date entities
if self.date_parser and detected_language == 'english':
try:
date_entities = self.date_parser(text)
for entity in date_entities:
if entity['entity_group'] == 'DATE':
# Here you would need more complex date parsing logic
# This is just a placeholder
print(f"Found date entity: {entity['word']}")
# For now, just default to tomorrow if we detect any date
return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
except Exception as e:
print(f"Error in date parsing: {e}")
# Default return None if no date pattern is recognized
return None
def handle_api_action(self, user_query, detected_language, sentiment_result, keywords):
"""Handle API-based actions"""
try:
# parsed_date = self.parse_relative_date(user_query, detected_language)
# if parsed_date:
# print(f"Parsed relative date: {parsed_date}")
# Route the query to determine API endpoint
router_result = self.router_chain.invoke({
"endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2),
"user_query": user_query,
"detected_language": detected_language,
"extracted_keywords": ", ".join(keywords),
"sentiment_analysis": json.dumps(sentiment_result),
"conversation_history": self.get_conversation_context(),
"current_datetime": datetime.now().strftime('%Y-%m-%dT%H:%M:%S'),
"timezone": "UTC",
"user_locale": "en-US"
})
# Parse router response
route_text = router_result["text"]
# cleaned_response = re.sub(r'//.*?$', '', route_text, flags=re.MULTILINE)
# cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
# cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
# try:
# parsed_route = json.loads(cleaned_response)
# except json.JSONDecodeError:
# json_match = re.search(r'\{.*?\}', cleaned_response, re.DOTALL)
# if json_match:
# parsed_route = json.loads(json_match.group(0))
# else:
# raise ValueError("Could not parse routing response")
# print(f"🔍 Parsed route: {parsed_route}")
cleaned_response = route_text
# Remove any comments (both single-line and multi-line)
cleaned_response = re.sub(r'//.*?$', '', cleaned_response, flags=re.MULTILINE)
cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
# Remove any trailing commas
cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
# Try different methods to parse the JSON response
try:
# First attempt: direct JSON parsing of cleaned response
parsed_route = json.loads(cleaned_response)
except json.JSONDecodeError:
try:
# Second attempt: extract JSON from markdown code block
json_match = re.search(r'```(?:json)?\s*(\{.*?\})\s*```', cleaned_response, re.DOTALL)
if json_match:
parsed_route = json.loads(json_match.group(1))
except (json.JSONDecodeError, AttributeError):
try:
# Third attempt: find JSON-like content using regex
json_pattern = r'\{\s*"endpoint"\s*:.*?\}'
json_match = re.search(json_pattern, cleaned_response, re.DOTALL)
if json_match:
json_str = json_match.group(0)
# Additional cleaning for the extracted JSON
json_str = re.sub(r'//.*?$', '', json_str, flags=re.MULTILINE)
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
parsed_route = json.loads(json_str)
except (json.JSONDecodeError, AttributeError):
print(f"Failed to parse JSON. Raw response: {route_text}")
print(f"Cleaned response: {cleaned_response}")
raise ValueError("Could not extract valid JSON from LLM response")
if not parsed_route:
raise ValueError("Failed to parse LLM response into valid JSON")
# Replace any placeholder values and inject parsed dates if available
if 'params' in parsed_route:
if 'patient_id' in parsed_route['params']:
parsed_route['params']['patient_id'] = self.user_id
else:
parsed_route['params']['patient_id'] = self.user_id
# Inject parsed date if available and a date parameter exists
# date_params = ['appointment_date', 'date', 'schedule_date', 'date_time', 'new_date_time']
# if parsed_date:
# for param in date_params:
# if param in parsed_route['params']:
# parsed_route['params'][param] = parsed_date
print('Parsed route: ', parsed_route)
# Make backend API call
api_response = self.backend_call(parsed_route)
print("🔗 API response received:", api_response)
# Generate user-friendly response
user_response_result = self.api_response_chain.invoke({
"user_query": user_query,
"api_response": json.dumps(api_response, indent=2),
"detected_language": detected_language,
"sentiment_analysis": json.dumps(sentiment_result),
})
print("🔗 API response:", user_response_result["text"].strip())
return {
"response": user_response_result["text"].strip(),
"api_data": api_response,
"routing_info": parsed_route
}
except Exception as e:
# Fallback error response
if detected_language == "arabic":
error_msg = "أعتذر، لم أتمكن من معالجة طلبك. يرجى المحاولة مرة أخرى أو صياغة السؤال بطريقة مختلفة."
else:
error_msg = "I apologize, I couldn't process your request. Please try again or rephrase your question."
return {
"response": error_msg,
"api_data": {"error": str(e)},
"routing_info": None
}
def chat(self, user_message: str) -> ChatResponse:
"""Main chat method that handles user messages"""
start_time = time.time()
# Check for exit commands
exit_commands = ['quit', 'exit', 'bye', 'خروج', 'وداعا', 'مع السلامة']
if user_message.lower().strip() in exit_commands:
return ChatResponse(
response_id=f"resp_{int(time.time())}",
response_type="conversation",
message="Goodbye! Take care of your health! / وداعاً! اعتن بصحتك!",
language="bilingual"
)
try:
# Language detection and analysis
detected_language = self.detect_language(user_message)
sentiment_result = self.analyze_sentiment(user_message)
keywords = self.extract_keywords(user_message)
print(f"🔍 Language: {detected_language} | Sentiment: {sentiment_result['sentiment']} | Keywords: {keywords}")
# Classify intent
intent_data = self.classify_intent(user_message, detected_language)
print(f"🎯 Intent: {intent_data['intent']} (confidence: {intent_data.get('confidence', 'N/A')})")
# Handle based on intent
if intent_data["intent"] == "API_ACTION" and intent_data.get("requires_backend", False):
# Handle API-based actions
print("🔗 Processing API action...")
action_result = self.handle_api_action(user_message, detected_language, sentiment_result, keywords)
# print(action_result)
response = ChatResponse(
response_id=f"resp_{int(time.time())}",
response_type="api_action",
message=action_result["response"],
api_call_made=True,
api_data=json.dumps(action_result["api_data"]) if 'action_result' in action_result else None,
language=detected_language
)
else:
# Handle conversational responses
print("💬 Processing conversational response...")
conv_response = self.handle_conversation(user_message, detected_language, sentiment_result)
response = ChatResponse(
response_id=f"resp_{int(time.time())}",
response_type="conversation",
message=conv_response,
api_call_made=False,
language=detected_language
)
# Add to conversation history
self.add_to_history(user_message, response.message, response.response_type)
print(f"⏱️ Processing time: {time.time() - start_time:.2f}s")
return response
except Exception as e:
print(f"❌ Error in chat processing: {e}")
error_msg = "I apologize for the technical issue. Please try again. / أعتذر عن المشكلة التقنية. يرجى المحاولة مرة أخرى."
return ChatResponse(
response_id=f"resp_{int(time.time())}",
response_type="conversation",
message=error_msg,
api_call_made=False,
language="bilingual"
)
def start_interactive_chat(self):
"""Start an interactive chat session"""
print("🚀 Starting interactive chat session...")
while True:
try:
# Get user input
user_input = input("\n👤 You: ").strip()
if not user_input:
continue
# Process the message
print("🤖 Processing...")
response = self.chat(user_input)
# Display response
print(f"\n🏥 Healthcare Bot: {response.message}")
# Show additional info if API call was made
if response.api_call_made and response.api_data:
if "error" not in response.api_data:
print("✅ Successfully retrieved information from healthcare system")
else:
print("⚠️ There was an issue accessing the healthcare system")
# Check for exit
if "Goodbye" in response.message or "وداعاً" in response.message:
break
except KeyboardInterrupt:
print("\n\n👋 Chat session ended. Goodbye!")
break
except Exception as e:
print(f"\n❌ Unexpected error: {e}")
print("The chat session will continue...")
# Create a simple function to start the chatbot
# def start_healthcare_chatbot():
# """Initialize and start the healthcare chatbot"""
# try:
# chatbot = HealthcareChatbot()
# chatbot.start_interactive_chat()
# except Exception as e:
# print(f"Failed to start chatbot: {e}")
# print("Please check your Ollama installation and endpoint documentation.")
# Test the chatbot
# if __name__ == "__main__":
# You can test individual messages like this:
# chatbot = HealthcareChatbot()
# Test conversational message
# print("\n=== TESTING CONVERSATIONAL MESSAGE ===")
# conv_response = chatbot.chat("Hello, how are you today?")
# print(f"Response: {conv_response.message}")
# print(f"Type: {conv_response.response_type}")
# Test API action message
# print("\n=== TESTING API ACTION MESSAGE ===")
# api_response = chatbot.chat("I want to book an appointment tomorrow at 2 PM")
# print(f"Response: {api_response.message}")
# print(f"Type: {api_response.response_type}")
# print(f"API Called: {api_response.api_call_made}")
# Start interactive session (uncomment to run)
# start_healthcare_chatbot()
# Fast api section
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Dict, Any, Optional
app = FastAPI(
title="Healthcare AI Assistant",
description="An AI-powered healthcare assistant that handles appointment booking and queries",
version="1.0.0"
)
# Initialize the AI agent
agent = HealthcareChatbot()
class QueryRequest(BaseModel):
query: str
class QueryResponse(BaseModel):
routing_info: Dict[str, Any]
api_response: Dict[str, Any]
user_friendly_response: str
detected_language: str
sentiment: Dict[str, Any]
@app.post("/query")
async def process_query(request: QueryRequest):
"""
Process a user query and return a response
"""
try:
response = agent.chat(request.query)
return response
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/health")
async def health_check():
"""
Health check endpoint
"""
return {"status": "healthy", "service": "healthcare-ai-assistant"}
@app.get("/")
async def root():
return {"message": "Hello World"}
# if __name__ == "__main__":
# import uvicorn
# uvicorn.run(app, host="0.0.0.0", port=8000) |