File size: 52,605 Bytes
4d047b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
import re
import json
import requests
import traceback
import time
import os
from typing import Dict, Any, List, Optional, Tuple
from datetime import datetime, timedelta

# Updated imports for pydantic
from pydantic import BaseModel, Field

# Updated imports for LangChain
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
from langchain_core.output_parsers import JsonOutputParser
from langchain_ollama import OllamaLLM
from langchain.chains import LLMChain
from langchain.callbacks.manager import CallbackManager
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_huggingface.embeddings import HuggingFaceEmbeddings

# Enhanced HuggingFace imports for improved functionality
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import numpy as np

# Import endpoints documentation
from endpoints_documentation import endpoints_documentation

# Set environment variables for HuggingFace
# if os.name == 'posix' and os.uname().sysname == 'Darwin':  # Check if running on macOS
#     os.environ["HF_HOME"] = os.path.expanduser("~/Library/Caches/huggingface")
#     os.environ["TRANSFORMERS_CACHE"] = os.path.expanduser("~/Library/Caches/huggingface/transformers")
# else:
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"


class ChatMessage(BaseModel):
    """Data model for chat messages"""
    message_id: str = Field(..., description="Unique identifier for the message")
    user_id: str = Field(..., description="User identifier")
    message: str = Field(..., description="The user's message")
    timestamp: datetime = Field(default_factory=datetime.now, description="When the message was sent")
    language: str = Field(default="english", description="Detected language of the message")


class ChatResponse(BaseModel):
    """Data model for chatbot responses"""
    response_id: str = Field(..., description="Unique identifier for the response")
    response_type: str = Field(..., description="Type of response: 'conversation' or 'api_action'")
    message: str = Field(..., description="The chatbot's response message")
    api_call_made: bool = Field(default=False, description="Whether an API call was made")
    api_data: Optional[Dict[str, Any]] = Field(default=None, description="API response data if applicable")
    language: str = Field(default="english", description="Language of the response")
    timestamp: datetime = Field(default_factory=datetime.now, description="When the response was generated")


class EndpointRequest(BaseModel):
    """Data model for API endpoint requests"""
    endpoint: str = Field(..., description="The API endpoint path to call")
    method: str = Field(..., description="The HTTP method to use (GET or POST)")
    params: Dict[str, Any] = Field(default_factory=dict, description="Parameters for the API call")
    missing_required: List[str] = Field(default_factory=list, description="Any required parameters that are missing")


class HealthcareChatbot:
    def __init__(self):
        self.endpoints_documentation = endpoints_documentation
        self.ollama_base_url = "http://localhost:11434"
        self.model_name = "gemma3"
        self.BASE_URL = 'https://f376-197-54-54-66.ngrok-free.app'
        self.headers = {'Content-type': 'application/json'}
        self.user_id = '86639f4c-5dfc-441d-b229-084f0fcdd748'
        self.max_retries = 3
        self.retry_delay = 2

        # Store conversation history
        self.conversation_history = []
        self.max_history_length = 10  # Keep last 10 exchanges

        # Initialize components
        self._initialize_language_tools()
        self._initialize_llm()
        self._initialize_parsers_and_chains()
        self._initialize_date_parser()

        print("Healthcare Chatbot initialized successfully!")
        self._print_welcome_message()

    def _print_welcome_message(self):
        """Print welcome message in both languages"""
        print("\n" + "="*60)
        print("🏥 HEALTHCARE CHATBOT READY")
        print("="*60)
        print("English: Hello! I'm your healthcare assistant. I can help you with:")
        print("• Booking and managing appointments")
        print("• Finding hospital information")
        print("• Viewing your medical records")
        print("• General healthcare questions")
        print()
        print("Arabic: مرحباً! أنا مساعدك الطبي. يمكنني مساعدتك في:")
        print("• حجز وإدارة المواعيد")
        print("• العثور على معلومات المستشفى")
        print("• عرض سجلاتك الطبية")
        print("• الأسئلة الطبية العامة")
        print("="*60)
        print("Type 'quit' or 'خروج' to exit\n")

    def _initialize_language_tools(self):
        """Initialize language processing tools"""
        try:
            self.embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
            self.language_classifier = pipeline(
                "text-classification",
                model="papluca/xlm-roberta-base-language-detection",
                top_k=1
            )
            self.sentiment_analyzer = pipeline(
                "sentiment-analysis",
                model="cardiffnlp/twitter-xlm-roberta-base-sentiment"
            )
            print("✓ Language processing models loaded successfully")
        except Exception as e:
            print(f"⚠ Warning: Some language models failed to load: {e}")
            self.language_classifier = None
            self.sentiment_analyzer = None

    def _initialize_date_parser(self):
        """Initialize date parsing model"""
        try:
            self.date_parser = pipeline(
                "token-classification",
                model="Jean-Baptiste/roberta-large-ner-english",
                aggregation_strategy="simple"
            )
        except Exception as e:
            print(f"⚠ Warning: Date parsing model failed to load: {e}")
            self.date_parser = None

    def _initialize_llm(self):
        """Initialize the LLM"""
        callbacks = [StreamingStdOutCallbackHandler()]
        self.llm = OllamaLLM(
            model=self.model_name,
            base_url=self.ollama_base_url,
            callbacks=callbacks,
            temperature=0.7,
            num_ctx=8192,
            top_p=0.9,
            request_timeout=60,
        )

    def _initialize_parsers_and_chains(self):
        """Initialize all prompt templates and chains"""
        self.json_parser = JsonOutputParser(pydantic_object=EndpointRequest)

        # Intent classification prompt
    #     self.intent_classifier_template = PromptTemplate(
    #       template="""
    #       You are an intent classifier. Your job is simple: understand what the user wants and check if any API endpoint can do that.

    #       User Message: {user_query}
    #       Language: {detected_language}
    #       API Endpoints: {endpoints_documentation}

    #       Think step by step:

    #       1. What does the user want from this message?
    #       Read the user's message carefully. What is the user trying to say or accomplish? What would a human understand from this message?

    #       2. Can any API endpoint fulfill what the user wants?
    #       Look at each API endpoint. Does any endpoint do what the user is asking for? Be very precise - only say yes if there's a clear match.

    #       Important rules:
    #       - Focus ONLY on the current message, ignore conversation history for classification
    #       - If the user is just talking, being social, or saying something casual, that's CONVERSATION
    #       - Only choose API_ACTION if the user is clearly asking for something an API endpoint can do
    #       - When you're not sure, choose CONVERSATION

    #       Answer in this format:
    #       {{
    #           "intent": "API_ACTION" or "CONVERSATION",
    #           "confidence": [0.0 to 1.0],
    #           "reasoning": "What does the user want? Can any API do this?",
    #           "requires_backend": true or false
    #       }}
    #       """,
    #       input_variables=["user_query", "detected_language", "conversation_history", "endpoints_documentation"]
    #   )

        self.intent_classifier_template = PromptTemplate(
            template="""
            You are a strict intent classification system. Your only task is to determine if the user message requires an API action or is general conversation.

            === ABSOLUTE RULES ===
            1. OUTPUT FORMAT MUST BE EXACTLY:
            {{
                "intent": "API_ACTION" or "CONVERSATION",
                "confidence": 0.0-1.0,
                "reasoning": "clear justification",
                "requires_backend": true or false
            }}
            2. Never invent custom intent types
            3. Never output endpoint names in the intent field
            4. "requires_backend" must match the intent (true for API_ACTION)

            === CLASSIFICATION CRITERIA ===
            API_ACTION must meet ALL of:
            - The message contains a clear, actionable request
            - The request matches a documented API endpoint's purpose
            - The request requires specific backend functionality

            CONVERSATION applies when:
            - The message is social/greeting/smalltalk
            - The request is too vague for API action
            - No API endpoint matches the request

            === INPUT DATA ===
            User Message: {user_query}
            Detected Language: {detected_language}
            API Endpoints: {endpoints_documentation}

            === DECISION PROCESS ===
            1. Analyze the message literally - what is the explicit request?
            2. Check endpoints documentation - is there an exact functional match?
            3. If uncertain, default to CONVERSATION
            4. Validate against rules before responding

            === OUTPUT VALIDATION ===
            Before responding, verify:
            - Intent is ONLY "API_ACTION" or "CONVERSATION"
            - Confidence reflects certainty (1.0 = perfect match)
            - Reasoning explains the endpoint match (for API_ACTION)
            - requires_backend aligns with intent

            Respond ONLY in the exact specified format.
            """,
            input_variables=["user_query", "detected_language", "conversation_history", "endpoints_documentation"]
        )



        # API routing prompt (reuse existing router_prompt_template)
        self.router_prompt_template = PromptTemplate(
            template="""
            You are a precise API routing assistant. Your job is to analyze user queries and select the correct API endpoint with proper parameters.

                === ENDPOINT DOCUMENTATION ===
                {endpoints_documentation}

                === USER REQUEST ANALYSIS ===
                User Query: {user_query}
                Language: {detected_language}
                Keywords: {extracted_keywords}
                Sentiment: {sentiment_analysis}
                Current Context:
                - DateTime: {current_datetime}
                - Timezone: {timezone}
                - User Locale: {user_locale}

                === ROUTING PROCESS ===
                Follow these steps in order:

                STEP 1: INTENT ANALYSIS
                - What is the user trying to accomplish?
                - What type of operation are they requesting? (create, read, update, delete, search, etc.)
                - What entity/resource are they working with?

                STEP 2: DATE/TIME PROCESSING
                - Identify any temporal expressions in the user query
                - Convert relative dates/times using the current context:
                * "اليوم" (today) = current date
                * "غدا" (tomorrow) = current date + 1 day
                * "أمس" (yesterday) = current date - 1 day
                * "الأسبوع القادم" (next week) = current date + 7 days
                * "بعد ساعتين" (in 2 hours) = current time + 2 hours
                * "صباحًا" (morning/AM), "مساءً" (evening/PM)
                - Handle different date formats and languages
                - Account for timezone differences
                - Convert to ISO 8601 format: YYYY-MM-DDTHH:MM:SS

                STEP 3: ENDPOINT MATCHING
                - Review each endpoint in the documentation
                - Match the user's intent to the endpoint's PURPOSE/DESCRIPTION
                - Consider the HTTP method (GET for retrieval, POST for creation, etc.)
                - Verify the endpoint can handle the user's specific request

                STEP 4: PARAMETER EXTRACTION
                - Identify ALL required parameters from the endpoint documentation
                - Extract parameter values from the user query
                - Convert data types as needed:
                - Dates/times to ISO 8601 format (YYYY-MM-DDTHH:mm:ss)
                - Numbers to integers
                - Set appropriate defaults for optional parameters if beneficial

                

                STEP 5: VALIDATION
                - Ensure ALL required parameters are provided or identified as missing
                - Verify parameter formats match documentation requirements
                - Check that the selected endpoint actually solves the user's problem

                === RESPONSE FORMAT ===
                Provide your analysis and decision in this exact JSON structure:

                {{
                    "reasoning": {{
                        "user_intent": "Brief description of what the user wants to accomplish",
                        "selected_endpoint": "Why this endpoint was chosen over others",
                        "parameter_mapping": "How user query maps to endpoint parameters"
                    }},
                    "endpoint": "/exact_endpoint_path_from_documentation",
                    "method": "HTTP_METHOD",
                    "params": {{
                        "required_param_1": "extracted_or_converted_value",
                        "required_param_2": "extracted_or_converted_value",
                        "optional_param": "value_if_applicable"
                    }},
                    "missing_required": ["list", "of", "missing", "required", "parameters"],
                    "confidence": 0.95
                }}

                === CRITICAL RULES ===
                1. ONLY select endpoints that exist in the provided documentation
                2. NEVER fabricate or assume endpoint parameters not in documentation
                3. ALL required parameters MUST be included or listed as missing
                4. Convert dates/times to ISO 8601 format (YYYY-MM-DDTHH:mm:ss)
                5. If patient_id is required and not provided, add it to missing_required
                6. Match endpoints by PURPOSE, not just keywords in the path
                7. If multiple endpoints could work, choose the most specific one
                8. If no endpoint matches, set endpoint to null and explain in reasoning

                === EXAMPLES OF GOOD MATCHING ===
                - User wants "patient records" → Use patient retrieval endpoint, not general search
                - User wants to "schedule appointment" → Use appointment creation endpoint
                - User asks "what appointments today" → Use appointment listing with date filter
                - User wants to "update medication" → Use medication update endpoint with patient_id

                Think step by step and be precise with your endpoint selection and parameter extraction.:""",
            input_variables=["endpoints_documentation", "user_query", "detected_language",
                            "extracted_keywords", "sentiment_analysis", "conversation_history",
                            "current_datetime", "timezone", "user_locale"]
        )
        # old one
        # self.router_prompt_template = PromptTemplate(
        #     template="""
        #     You are a precise API routing assistant. Your job is to analyze user queries and select the correct API endpoint with proper parameters.

        #         === ENDPOINT DOCUMENTATION ===
        #         {endpoints_documentation}

        #         === USER REQUEST ANALYSIS ===
        #         User Query: {user_query}
        #         Language: {detected_language}
        #         Keywords: {extracted_keywords}
        #         Sentiment: {sentiment_analysis}

        #         === ROUTING PROCESS ===
        #         Follow these steps in order:

        #         STEP 1: INTENT ANALYSIS
        #         - What is the user trying to accomplish?
        #         - What type of operation are they requesting? (create, read, update, delete, search, etc.)
        #         - What entity/resource are they working with?

        #         STEP 2: ENDPOINT MATCHING
        #         - Review each endpoint in the documentation
        #         - Match the user's intent to the endpoint's PURPOSE/DESCRIPTION
        #         - Consider the HTTP method (GET for retrieval, POST for creation, etc.)
        #         - Verify the endpoint can handle the user's specific request

        #         STEP 3: PARAMETER EXTRACTION
        #         - Identify ALL required parameters from the endpoint documentation
        #         - Extract parameter values from the user query
        #         - Convert data types as needed (dates to ISO 8601, numbers to integers, etc.)
        #         - Set appropriate defaults for optional parameters if beneficial

        #         STEP 4: VALIDATION
        #         - Ensure ALL required parameters are provided or identified as missing
        #         - Verify parameter formats match documentation requirements
        #         - Check that the selected endpoint actually solves the user's problem

        #         === RESPONSE FORMAT ===
        #         Provide your analysis and decision in this exact JSON structure:

        #         {{
        #             "reasoning": {{
        #                 "user_intent": "Brief description of what the user wants to accomplish",
        #                 "selected_endpoint": "Why this endpoint was chosen over others",
        #                 "parameter_mapping": "How user query maps to endpoint parameters"
        #             }},
        #             "endpoint": "/exact_endpoint_path_from_documentation",
        #             "method": "HTTP_METHOD",
        #             "params": {{
        #                 "required_param_1": "extracted_or_converted_value",
        #                 "required_param_2": "extracted_or_converted_value",
        #                 "optional_param": "value_if_applicable"
        #             }},
        #             "missing_required": ["list", "of", "missing", "required", "parameters"],
        #             "confidence": 0.95
        #         }}

        #         === CRITICAL RULES ===
        #         1. ONLY select endpoints that exist in the provided documentation
        #         2. NEVER fabricate or assume endpoint parameters not in documentation
        #         3. ALL required parameters MUST be included or listed as missing
        #         4. Convert dates/times to ISO 8601 format (YYYY-MM-DDTHH:MM:SS)
        #         5. If patient_id is required and not provided, add it to missing_required
        #         6. Match endpoints by PURPOSE, not just keywords in the path
        #         7. If multiple endpoints could work, choose the most specific one
        #         8. If no endpoint matches, set endpoint to null and explain in reasoning

        #         === EXAMPLES OF GOOD MATCHING ===
        #         - User wants "patient records" → Use patient retrieval endpoint, not general search
        #         - User wants to "schedule appointment" → Use appointment creation endpoint
        #         - User asks "what appointments today" → Use appointment listing with date filter
        #         - User wants to "update medication" → Use medication update endpoint with patient_id

        #         Think step by step and be precise with your endpoint selection and parameter extraction.:""",
        #     input_variables=["endpoints_documentation", "user_query", "detected_language",
        #                     "extracted_keywords", "sentiment_analysis", "conversation_history"]
        # )

        # Conversational response prompt
        self.conversation_template = PromptTemplate(
            template="""
            You are a friendly and professional healthcare chatbot assistant.

            === RESPONSE GUIDELINES ===
            - Respond ONLY in {detected_language}
            - Be helpful, empathetic, and professional
            - Keep responses concise but informative
            - Use appropriate medical terminology when needed
            - Maintain a caring and supportive tone

            === CONTEXT ===
            User Message: {user_query}
            Language: {detected_language}
            Sentiment: {sentiment_analysis}
            Conversation History: {conversation_history}

            === LANGUAGE-SPECIFIC INSTRUCTIONS ===

            FOR ARABIC RESPONSES:
            - Use Modern Standard Arabic (الفصحى)
            - Be respectful and formal as appropriate in Arabic culture
            - Use proper Arabic medical terminology
            - Keep sentences clear and grammatically correct

            FOR ENGLISH RESPONSES:
            - Use clear, professional English
            - Be warm and approachable
            - Use appropriate medical terminology

            === RESPONSE RULES ===
            1. Address the user's question or comment directly
            2. Provide helpful information when possible
            3. If you cannot help with something specific, explain what you CAN help with
            4. Never provide specific medical advice - always recommend consulting healthcare professionals
            5. Be encouraging and supportive
            6. Do NOT mix languages in your response
            7. End responses naturally without asking multiple questions

            Generate a helpful conversational response:""",
            input_variables=["user_query", "detected_language", "sentiment_analysis", "conversation_history"]
        )

        # API response formatting prompt (reuse existing user_response_template)
        self.user_response_template = PromptTemplate(
            template="""
            You are a professional healthcare assistant. Answer the user's question using the provided API data.

            User Query: {user_query}
            User Sentiment: {sentiment_analysis}
            Response Language: {detected_language}

            API Response Data:
            {api_response}

            === INSTRUCTIONS ===

            1. Read and understand the API response data above
            2. Use ONLY the actual data from the API response - never make up information
            3. Respond in {detected_language} language only
            4. Write like you're talking to a friend or family member - warm, friendly, and caring
            5. Make it sound natural and conversational, not like a system message
            6. Convert technical data to simple, everyday language

            === DATE AND TIME FORMATTING ===

            When you see date_time fields like '2025-05-30T10:28:10':
            - For English: Convert to "May 30, 2025 at 10:28 AM"
            - For Arabic: Convert to "٣٠ مايو ٢٠٢٥ في الساعة ١٠:٢٨ صباحاً"

            === RESPONSE EXAMPLES ===

            For appointment confirmations:
            - English: "Great! I've got your appointment set up for May 30, 2025 at 10:28 AM. Everything looks good!"
            - Arabic: "ممتاز! موعدك محجوز يوم ٣٠ مايو ٢٠٢٥ الساعة ١٠:٢٨ صباحاً. كل شيء جاهز!"

            For appointment info:
            - English: "Your next appointment is on May 30, 2025 at 10:28 AM. See you then!"
            - Arabic: "موعدك القادم يوم ٣٠ مايو ٢٠٢٥ الساعة ١٠:٢٨ صباحاً. نراك قريباً!"

            === TONE GUIDELINES ===
            - Use friendly words like: "Great!", "Perfect!", "All set!", "ممتاز!", "رائع!", "تمام!"
            - Add reassuring phrases: "Everything looks good", "You're all set", "كل شيء جاهز", "تم بنجاح"
            - Sound helpful and caring, not robotic or formal

            === LANGUAGE FORMATTING ===

            For Arabic responses:
            - Use Arabic numerals: ٠١٢٣٤٥٦٧٨٩
            - Use Arabic month names: يناير، فبراير، مارس، أبريل، مايو، يونيو، يوليو، أغسطس، سبتمبر، أكتوبر، نوفمبر، ديسمبر
            - Friendly, warm Arabic tone

            For English responses:
            - Use standard English numerals
            - 12-hour time format with AM/PM
            - Friendly, conversational English tone

            === CRITICAL RULES ===
            - Extract dates and times exactly as they appear in the API response
            - Never use example dates or placeholder information
            - Respond only in the specified language
            - Make your response sound like a helpful friend, not a computer
            - Focus on answering the user's specific question with warmth and care

            Generate a friendly, helpful response using the API data provided above.
            """,
            input_variables=["user_query", "api_response", "detected_language", "sentiment_analysis"]
        )
    #     self.user_response_template = PromptTemplate(
    #       template="""
    #       You are a professional healthcare assistant. Your task is to carefully analyze the API data and respond to the user's question accurately.

    #       User Query: {user_query}
    #       User Sentiment: {sentiment_analysis}
    #       Response Language: {detected_language}

    #       API Response Data:
    #       {api_response}

    #       === CRITICAL INSTRUCTIONS ===

    #       1. FIRST: Carefully read and analyze the API response data above
    #       2. SECOND: Identify all date_time fields in the format 'YYYY-MM-DDTHH:MM:SS'
    #       3. THIRD: Extract the EXACT dates and times from the API response - DO NOT use any example dates
    #       4. FOURTH: Convert these extracted dates to the user-friendly format specified below
    #       5. FIFTH: Respond ONLY in {detected_language} language
    #       6. Use a warm, friendly, conversational tone like talking to a friend

    #       === DATE EXTRACTION AND CONVERSION ===

    #       Step 1: Find date_time fields in the API response (format: 'YYYY-MM-DDTHH:MM:SS')
    #       Step 2: Convert ONLY the actual extracted dates using these rules:

    #       For English:
    #       - Convert 'YYYY-MM-DDTHH:MM:SS' to readable format
    #       - Example: '2025-06-01T08:00:00' becomes "June 1, 2025 at 8:00 AM"
    #       - Use 12-hour format with AM/PM

    #       For Arabic:
    #       - Convert to Arabic numerals and month names
    #       - Example: '2025-06-01T08:00:00' becomes "١ يونيو ٢٠٢٥ في الساعة ٨:٠٠ صباحاً"
    #       - Arabic months: يناير، فبراير، مارس، أبريل، مايو، يونيو، يوليو، أغسطس، سبتمبر، أكتوبر، نوفمبر، ديسمبر
    #       - Arabic numerals: ٠١٢٣٤٥٦٧٨٩

    #       === RESPONSE APPROACH ===

    #       1. Analyze what the user is asking for
    #       2. Find the relevant information in the API response
    #       3. Extract actual dates/times from the API data
    #       4. Convert technical information to simple language
    #       5. Respond warmly and helpfully

    #       === TONE AND LANGUAGE ===

    #       English responses:
    #       - Use phrases like: "Great!", "Perfect!", "All set!", "Here's what I found:"
    #       - Be conversational and reassuring

    #       Arabic responses:
    #       - Use phrases like: "ممتاز!", "رائع!", "تمام!", "إليك ما وجدته:"
    #       - Be warm and helpful in Arabic style

    #       === IMPORTANT REMINDERS ===
    #       - NEVER use example dates from this prompt
    #       - ALWAYS extract dates from the actual API response data
    #       - If no dates exist in API response, don't mention any dates
    #       - Stay focused on answering the user's specific question
    #       - Use only information that exists in the API response

    #       Now, carefully analyze the API response above and generate a helpful response to the user's query using ONLY the actual data provided.
    #       """,
    #       input_variables=["user_query", "api_response", "detected_language", "sentiment_analysis"]
    #   )

        # Create chains
        self.intent_chain = LLMChain(llm=self.llm, prompt=self.intent_classifier_template)
        self.router_chain = LLMChain(llm=self.llm, prompt=self.router_prompt_template)
        self.conversation_chain = LLMChain(llm=self.llm, prompt=self.conversation_template)
        self.api_response_chain = LLMChain(llm=self.llm, prompt=self.user_response_template)

    def detect_language(self, text):
        """Detect language of the input text"""
        if self.language_classifier and len(text.strip()) > 3:
            try:
                result = self.language_classifier(text)
                detected_lang = result[0][0]['label']
                confidence = result[0][0]['score']

                if detected_lang in ['ar', 'arabic']:
                    return "arabic"
                elif detected_lang in ['en', 'english']:
                    return "english"
                elif confidence > 0.8:
                    return "english"  # Default to English for unsupported languages
            except:
                pass

        # Fallback: Basic Arabic detection
        arabic_pattern = re.compile(r'[\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF]+')
        if arabic_pattern.search(text):
            return "arabic"

        return "english"

    def analyze_sentiment(self, text):
        """Analyze sentiment of the text"""
        if self.sentiment_analyzer and len(text.strip()) > 3:
            try:
                result = self.sentiment_analyzer(text)
                return {
                    "sentiment": result[0]['label'],
                    "score": result[0]['score']
                }
            except:
                pass

        return {"sentiment": "NEUTRAL", "score": 0.5}

    def extract_keywords(self, text):
        """Extract keywords from text"""
        # Simple keyword extraction
        words = re.findall(r'\b\w+\b', text.lower())
        # Filter out common words and keep meaningful ones
        stopwords = {'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were'}
        keywords = [w for w in words if len(w) > 3 and w not in stopwords]
        return list(set(keywords))[:5]  # Return top 5 unique keywords

    def get_conversation_context(self):
        """Get recent conversation history as context"""
        if not self.conversation_history:
            return "No previous conversation"

        context = []
        for item in self.conversation_history[-3:]:  # Last 3 exchanges
            context.append(f"User: {item['user_message']}")
            context.append(f"Bot: {item['bot_response'][:100]}...")  # Truncate long responses

        return " | ".join(context)

    def add_to_history(self, user_message, bot_response, response_type):
        """Add exchange to conversation history"""
        self.conversation_history.append({
            'timestamp': datetime.now(),
            'user_message': user_message,
            'bot_response': bot_response,
            'response_type': response_type
        })

        # Keep only recent history
        if len(self.conversation_history) > self.max_history_length:
            self.conversation_history = self.conversation_history[-self.max_history_length:]

    def classify_intent(self, user_query, detected_language):
        """Classify if the user query requires API action or is conversational"""
        try:
            result = self.intent_chain.invoke({
                "user_query": user_query,
                "detected_language": detected_language,
                "conversation_history": self.get_conversation_context(),
                "endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2)
            })

            # Parse the JSON response
            intent_text = result["text"]
            # Clean and parse JSON
            cleaned_response = re.sub(r'//.*?$', '', intent_text, flags=re.MULTILINE)
            cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
            cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)

            try:
                intent_data = json.loads(cleaned_response)
                return intent_data
            except json.JSONDecodeError:
                # Try to extract JSON from the response
                json_match = re.search(r'\{.*?\}', cleaned_response, re.DOTALL)
                if json_match:
                    intent_data = json.loads(json_match.group(0))
                    return intent_data
                else:
                    # Default classification if parsing fails
                    return {
                        "intent": "CONVERSATION",
                        "confidence": 0.5,
                        "reasoning": "Failed to parse LLM response",
                        "requires_backend": False
                    }
        except Exception as e:
            print(f"Error in intent classification: {e}")
            return {
                "intent": "CONVERSATION",
                "confidence": 0.5,
                "reasoning": f"Error in classification: {str(e)}",
                "requires_backend": False
            }

    def handle_conversation(self, user_query, detected_language, sentiment_result):
        """Handle conversational responses"""
        try:
            result = self.conversation_chain.invoke({
                "user_query": user_query,
                "detected_language": detected_language,
                "sentiment_analysis": json.dumps(sentiment_result),
                "conversation_history": self.get_conversation_context()
            })

            return result["text"].strip()

        except Exception as e:
            # Fallback response
            if detected_language == "arabic":
                return "أعتذر، واجهت مشكلة في المعالجة. كيف يمكنني مساعدتك؟"
            else:
                return "I apologize, I encountered a processing issue. How can I help you?"

    def backend_call(self, data: Dict[str, Any]) -> Dict[str, Any]:
        """Make API call to backend with retry logic"""
        endpoint_url = data.get('endpoint')
        endpoint_method = data.get('method')
        endpoint_params = data.get('params', {}).copy()

        print('Sending the api request')
        print(f"🔗 Making API call to {endpoint_method} {self.BASE_URL + endpoint_url} with params: {endpoint_params}")

        # Inject patient_id if needed
        if 'patient_id' in endpoint_params:
            endpoint_params['patient_id'] = self.user_id

        retries = 0
        response = None
        while retries < self.max_retries:
            try:
                if endpoint_method.upper() == 'GET':
                    response = requests.get(
                        self.BASE_URL + endpoint_url,
                        params=endpoint_params,
                        headers=self.headers,
                        timeout=10
                    )
                elif endpoint_method.upper() in ['POST', 'PUT', 'DELETE']:
                    response = requests.request(
                        endpoint_method.upper(),
                        self.BASE_URL + endpoint_url,
                        json=endpoint_params,
                        headers=self.headers,
                        timeout=10
                    )

                response.raise_for_status()
                print('Backend Response : ', response.json())
                return response.json()

            except requests.exceptions.RequestException as e:
                retries += 1
                if retries >= self.max_retries:
                    return {
                        "error": "Backend API call failed after multiple retries",
                        "details": str(e),
                        "status_code": getattr(e.response, 'status_code', None) if hasattr(e, 'response') else None
                    }

                time.sleep(self.retry_delay)
    def parse_relative_date(self, text, detected_language):
        """
        Parse relative dates from text using a combination of methods
        """
        today = datetime.now()

        # Handle common relative date patterns in English and Arabic
        tomorrow_patterns = {
            'english': [r'\btomorrow\b', r'\bnext day\b'],
            'arabic': [r'\bغدا\b', r'\bبكرة\b', r'\bغدًا\b', r'\bالغد\b']
        }

        next_week_patterns = {
            'english': [r'\bnext week\b'],
            'arabic': [r'\bالأسبوع القادم\b', r'\bالأسبوع المقبل\b', r'\bالاسبوع الجاي\b']
        }

        # Check for "tomorrow" patterns
        for pattern in tomorrow_patterns.get(detected_language, []) + tomorrow_patterns.get('english', []):
            if re.search(pattern, text, re.IGNORECASE):
                return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')

        # Check for "next week" patterns
        for pattern in next_week_patterns.get(detected_language, []) + next_week_patterns.get('english', []):
            if re.search(pattern, text, re.IGNORECASE):
                return (today + timedelta(days=7)).strftime('%Y-%m-%dT%H:%M:%S')

        # If NER model is available, use it to extract date entities
        if self.date_parser and detected_language == 'english':
            try:
                date_entities = self.date_parser(text)
                for entity in date_entities:
                    if entity['entity_group'] == 'DATE':
                        # Here you would need more complex date parsing logic
                        # This is just a placeholder
                        print(f"Found date entity: {entity['word']}")
                        # For now, just default to tomorrow if we detect any date
                        return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
            except Exception as e:
                print(f"Error in date parsing: {e}")

        # Default return None if no date pattern is recognized
        return None


    def handle_api_action(self, user_query, detected_language, sentiment_result, keywords):
        """Handle API-based actions"""
        try:

            # parsed_date = self.parse_relative_date(user_query, detected_language)
            # if parsed_date:
            #     print(f"Parsed relative date: {parsed_date}")

            # Route the query to determine API endpoint
            router_result = self.router_chain.invoke({
                "endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2),
                "user_query": user_query,
                "detected_language": detected_language,
                "extracted_keywords": ", ".join(keywords),
                "sentiment_analysis": json.dumps(sentiment_result),
                "conversation_history": self.get_conversation_context(),
                "current_datetime": datetime.now().strftime('%Y-%m-%dT%H:%M:%S'),
                "timezone": "UTC",
                "user_locale": "en-US"
            })

            # Parse router response
            route_text = router_result["text"]
            # cleaned_response = re.sub(r'//.*?$', '', route_text, flags=re.MULTILINE)
            # cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
            # cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)

            # try:
            #     parsed_route = json.loads(cleaned_response)
            # except json.JSONDecodeError:
            #     json_match = re.search(r'\{.*?\}', cleaned_response, re.DOTALL)
            #     if json_match:
            #         parsed_route = json.loads(json_match.group(0))
            #     else:
            #         raise ValueError("Could not parse routing response")

            # print(f"🔍 Parsed route: {parsed_route}")
            cleaned_response = route_text

            # Remove any comments (both single-line and multi-line)
            cleaned_response = re.sub(r'//.*?$', '', cleaned_response, flags=re.MULTILINE)
            cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)

            # Remove any trailing commas
            cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)

            # Try different methods to parse the JSON response
            try:
                # First attempt: direct JSON parsing of cleaned response
                parsed_route = json.loads(cleaned_response)
            except json.JSONDecodeError:
                try:
                    # Second attempt: extract JSON from markdown code block
                    json_match = re.search(r'```(?:json)?\s*(\{.*?\})\s*```', cleaned_response, re.DOTALL)
                    if json_match:
                        parsed_route = json.loads(json_match.group(1))
                except (json.JSONDecodeError, AttributeError):
                    try:
                        # Third attempt: find JSON-like content using regex
                        json_pattern = r'\{\s*"endpoint"\s*:.*?\}'
                        json_match = re.search(json_pattern, cleaned_response, re.DOTALL)
                        if json_match:
                            json_str = json_match.group(0)
                            # Additional cleaning for the extracted JSON
                            json_str = re.sub(r'//.*?$', '', json_str, flags=re.MULTILINE)
                            json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
                            parsed_route = json.loads(json_str)
                    except (json.JSONDecodeError, AttributeError):
                        print(f"Failed to parse JSON. Raw response: {route_text}")
                        print(f"Cleaned response: {cleaned_response}")
                        raise ValueError("Could not extract valid JSON from LLM response")

            if not parsed_route:
                raise ValueError("Failed to parse LLM response into valid JSON")

            # Replace any placeholder values and inject parsed dates if available
            if 'params' in parsed_route:
                if 'patient_id' in parsed_route['params']:
                    parsed_route['params']['patient_id'] = self.user_id
                else:
                   parsed_route['params']['patient_id'] = self.user_id 

                # Inject parsed date if available and a date parameter exists
                # date_params = ['appointment_date', 'date', 'schedule_date', 'date_time', 'new_date_time']
                # if parsed_date:
                #     for param in date_params:
                #         if param in parsed_route['params']:
                #             parsed_route['params'][param] = parsed_date

            print('Parsed route: ', parsed_route)

            # Make backend API call
            api_response = self.backend_call(parsed_route)

            print("🔗 API response received:", api_response)
            # Generate user-friendly response
            user_response_result = self.api_response_chain.invoke({
                "user_query": user_query,
                "api_response": json.dumps(api_response, indent=2),
                "detected_language": detected_language,
                "sentiment_analysis": json.dumps(sentiment_result),
            })

            print("🔗 API response:", user_response_result["text"].strip())

            return {
                "response": user_response_result["text"].strip(),
                "api_data": api_response,
                "routing_info": parsed_route
            }

        except Exception as e:
            # Fallback error response
            if detected_language == "arabic":
                error_msg = "أعتذر، لم أتمكن من معالجة طلبك. يرجى المحاولة مرة أخرى أو صياغة السؤال بطريقة مختلفة."
            else:
                error_msg = "I apologize, I couldn't process your request. Please try again or rephrase your question."

            return {
                "response": error_msg,
                "api_data": {"error": str(e)},
                "routing_info": None
            }

    def chat(self, user_message: str) -> ChatResponse:
        """Main chat method that handles user messages"""
        start_time = time.time()

        # Check for exit commands
        exit_commands = ['quit', 'exit', 'bye', 'خروج', 'وداعا', 'مع السلامة']
        if user_message.lower().strip() in exit_commands:
            return ChatResponse(
                response_id=f"resp_{int(time.time())}",
                response_type="conversation",
                message="Goodbye! Take care of your health! / وداعاً! اعتن بصحتك!",
                language="bilingual"
            )

        try:
            # Language detection and analysis
            detected_language = self.detect_language(user_message)
            sentiment_result = self.analyze_sentiment(user_message)
            keywords = self.extract_keywords(user_message)

            print(f"🔍 Language: {detected_language} | Sentiment: {sentiment_result['sentiment']} | Keywords: {keywords}")

            # Classify intent
            intent_data = self.classify_intent(user_message, detected_language)
            print(f"🎯 Intent: {intent_data['intent']} (confidence: {intent_data.get('confidence', 'N/A')})")

            # Handle based on intent
            if intent_data["intent"] == "API_ACTION" and intent_data.get("requires_backend", False):
                # Handle API-based actions
                print("🔗 Processing API action...")
                action_result = self.handle_api_action(user_message, detected_language, sentiment_result, keywords)

                # print(action_result)

                response = ChatResponse(
                    response_id=f"resp_{int(time.time())}",
                    response_type="api_action",
                    message=action_result["response"],
                    api_call_made=True,
                    api_data=json.dumps(action_result["api_data"]) if 'action_result' in action_result else None,
                    language=detected_language
                )

            else:
                # Handle conversational responses
                print("💬 Processing conversational response...")
                conv_response = self.handle_conversation(user_message, detected_language, sentiment_result)

                response = ChatResponse(
                    response_id=f"resp_{int(time.time())}",
                    response_type="conversation",
                    message=conv_response,
                    api_call_made=False,
                    language=detected_language
                )

            # Add to conversation history
            self.add_to_history(user_message, response.message, response.response_type)

            print(f"⏱️ Processing time: {time.time() - start_time:.2f}s")
            return response

        except Exception as e:
            print(f"❌ Error in chat processing: {e}")
            error_msg = "I apologize for the technical issue. Please try again. / أعتذر عن المشكلة التقنية. يرجى المحاولة مرة أخرى."

            return ChatResponse(
                response_id=f"resp_{int(time.time())}",
                response_type="conversation",
                message=error_msg,
                api_call_made=False,
                language="bilingual"
            )

    def start_interactive_chat(self):
        """Start an interactive chat session"""
        print("🚀 Starting interactive chat session...")

        while True:
            try:
                # Get user input
                user_input = input("\n👤 You: ").strip()

                if not user_input:
                    continue

                # Process the message
                print("🤖 Processing...")
                response = self.chat(user_input)

                # Display response
                print(f"\n🏥 Healthcare Bot: {response.message}")

                # Show additional info if API call was made
                if response.api_call_made and response.api_data:
                    if "error" not in response.api_data:
                        print("✅ Successfully retrieved information from healthcare system")
                    else:
                        print("⚠️ There was an issue accessing the healthcare system")

                # Check for exit
                if "Goodbye" in response.message or "وداعاً" in response.message:
                    break

            except KeyboardInterrupt:
                print("\n\n👋 Chat session ended. Goodbye!")
                break
            except Exception as e:
                print(f"\n❌ Unexpected error: {e}")
                print("The chat session will continue...")
# Create a simple function to start the chatbot
# def start_healthcare_chatbot():
#     """Initialize and start the healthcare chatbot"""
#     try:
#         chatbot = HealthcareChatbot()
#         chatbot.start_interactive_chat()
#     except Exception as e:
#         print(f"Failed to start chatbot: {e}")
#         print("Please check your Ollama installation and endpoint documentation.")


# Test the chatbot
# if __name__ == "__main__":
    # You can test individual messages like this:
    # chatbot = HealthcareChatbot()
    
    # Test conversational message
    # print("\n=== TESTING CONVERSATIONAL MESSAGE ===")
    # conv_response = chatbot.chat("Hello, how are you today?")
    # print(f"Response: {conv_response.message}")
    # print(f"Type: {conv_response.response_type}")
    
    # Test API action message
    # print("\n=== TESTING API ACTION MESSAGE ===")
    # api_response = chatbot.chat("I want to book an appointment tomorrow at 2 PM")
    # print(f"Response: {api_response.message}")
    # print(f"Type: {api_response.response_type}")
    # print(f"API Called: {api_response.api_call_made}")
    
    # Start interactive session (uncomment to run)
    # start_healthcare_chatbot()

# Fast api section 
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Dict, Any, Optional


app = FastAPI(
    title="Healthcare AI Assistant",
    description="An AI-powered healthcare assistant that handles appointment booking and queries",
    version="1.0.0"
)

# Initialize the AI agent
agent = HealthcareChatbot()

class QueryRequest(BaseModel):
    query: str

class QueryResponse(BaseModel):
    routing_info: Dict[str, Any]
    api_response: Dict[str, Any]
    user_friendly_response: str
    detected_language: str
    sentiment: Dict[str, Any]

@app.post("/query")
async def process_query(request: QueryRequest):
    """
    Process a user query and return a response
    """
    try:
        response = agent.chat(request.query)
        return response
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/health")
async def health_check():
    """
    Health check endpoint
    """
    return {"status": "healthy", "service": "healthcare-ai-assistant"}

@app.get("/")
async def root():
    return {"message": "Hello World"}

# if __name__ == "__main__":
#     import uvicorn
#     uvicorn.run(app, host="0.0.0.0", port=8000)