Spaces:
Running
Running
Commit
·
4d047b2
1
Parent(s):
24135cd
Add new logic
Browse files
main.py
CHANGED
@@ -27,10 +27,6 @@ import numpy as np
|
|
27 |
from endpoints_documentation import endpoints_documentation
|
28 |
|
29 |
# Set environment variables for HuggingFace
|
30 |
-
# if os.name == 'posix' and os.uname().sysname == 'Darwin': # Check if running on macOS
|
31 |
-
# os.environ["HF_HOME"] = os.path.expanduser("~/Library/Caches/huggingface")
|
32 |
-
# os.environ["TRANSFORMERS_CACHE"] = os.path.expanduser("~/Library/Caches/huggingface/transformers")
|
33 |
-
# else:
|
34 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
35 |
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
|
36 |
|
@@ -55,12 +51,15 @@ class ChatResponse(BaseModel):
|
|
55 |
timestamp: datetime = Field(default_factory=datetime.now, description="When the response was generated")
|
56 |
|
57 |
|
58 |
-
class
|
59 |
-
"""Data model for
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
|
66 |
class HealthcareChatbot:
|
@@ -68,22 +67,22 @@ class HealthcareChatbot:
|
|
68 |
self.endpoints_documentation = endpoints_documentation
|
69 |
self.ollama_base_url = "http://localhost:11434"
|
70 |
self.model_name = "gemma3"
|
71 |
-
self.BASE_URL = 'https://
|
72 |
self.headers = {'Content-type': 'application/json'}
|
73 |
-
self.user_id = '
|
74 |
self.max_retries = 3
|
75 |
self.retry_delay = 2
|
76 |
-
|
77 |
# Store conversation history
|
78 |
self.conversation_history = []
|
79 |
self.max_history_length = 10 # Keep last 10 exchanges
|
80 |
-
|
81 |
# Initialize components
|
82 |
self._initialize_language_tools()
|
83 |
self._initialize_llm()
|
84 |
self._initialize_parsers_and_chains()
|
85 |
self._initialize_date_parser()
|
86 |
-
|
87 |
print("Healthcare Chatbot initialized successfully!")
|
88 |
self._print_welcome_message()
|
89 |
|
@@ -111,7 +110,7 @@ class HealthcareChatbot:
|
|
111 |
try:
|
112 |
self.embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
|
113 |
self.language_classifier = pipeline(
|
114 |
-
"text-classification",
|
115 |
model="papluca/xlm-roberta-base-language-detection",
|
116 |
top_k=1
|
117 |
)
|
@@ -151,277 +150,132 @@ class HealthcareChatbot:
|
|
151 |
)
|
152 |
|
153 |
def _initialize_parsers_and_chains(self):
|
154 |
-
"""Initialize all prompt templates and chains"""
|
155 |
-
self.json_parser = JsonOutputParser(pydantic_object=
|
156 |
-
|
157 |
-
#
|
158 |
-
|
159 |
-
# template="""
|
160 |
-
# You are an intent classifier. Your job is simple: understand what the user wants and check if any API endpoint can do that.
|
161 |
-
|
162 |
-
# User Message: {user_query}
|
163 |
-
# Language: {detected_language}
|
164 |
-
# API Endpoints: {endpoints_documentation}
|
165 |
-
|
166 |
-
# Think step by step:
|
167 |
-
|
168 |
-
# 1. What does the user want from this message?
|
169 |
-
# Read the user's message carefully. What is the user trying to say or accomplish? What would a human understand from this message?
|
170 |
-
|
171 |
-
# 2. Can any API endpoint fulfill what the user wants?
|
172 |
-
# Look at each API endpoint. Does any endpoint do what the user is asking for? Be very precise - only say yes if there's a clear match.
|
173 |
-
|
174 |
-
# Important rules:
|
175 |
-
# - Focus ONLY on the current message, ignore conversation history for classification
|
176 |
-
# - If the user is just talking, being social, or saying something casual, that's CONVERSATION
|
177 |
-
# - Only choose API_ACTION if the user is clearly asking for something an API endpoint can do
|
178 |
-
# - When you're not sure, choose CONVERSATION
|
179 |
-
|
180 |
-
# Answer in this format:
|
181 |
-
# {{
|
182 |
-
# "intent": "API_ACTION" or "CONVERSATION",
|
183 |
-
# "confidence": [0.0 to 1.0],
|
184 |
-
# "reasoning": "What does the user want? Can any API do this?",
|
185 |
-
# "requires_backend": true or false
|
186 |
-
# }}
|
187 |
-
# """,
|
188 |
-
# input_variables=["user_query", "detected_language", "conversation_history", "endpoints_documentation"]
|
189 |
-
# )
|
190 |
-
|
191 |
-
self.intent_classifier_template = PromptTemplate(
|
192 |
template="""
|
193 |
-
You are
|
|
|
|
|
194 |
|
195 |
-
===
|
196 |
-
|
197 |
-
{
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
3. Never output endpoint names in the intent field
|
205 |
-
4. "requires_backend" must match the intent (true for API_ACTION)
|
206 |
-
|
207 |
-
=== CLASSIFICATION CRITERIA ===
|
208 |
-
API_ACTION must meet ALL of:
|
209 |
-
- The message contains a clear, actionable request
|
210 |
-
- The request matches a documented API endpoint's purpose
|
211 |
-
- The request requires specific backend functionality
|
212 |
-
|
213 |
-
CONVERSATION applies when:
|
214 |
-
- The message is social/greeting/smalltalk
|
215 |
-
- The request is too vague for API action
|
216 |
-
- No API endpoint matches the request
|
217 |
-
|
218 |
-
=== INPUT DATA ===
|
219 |
-
User Message: {user_query}
|
220 |
-
Detected Language: {detected_language}
|
221 |
-
API Endpoints: {endpoints_documentation}
|
222 |
|
223 |
=== DECISION PROCESS ===
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
-
|
232 |
-
-
|
233 |
-
-
|
234 |
-
-
|
235 |
-
|
236 |
-
|
237 |
-
"""
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
|
|
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
Language: {detected_language}
|
254 |
-
Keywords: {extracted_keywords}
|
255 |
-
Sentiment: {sentiment_analysis}
|
256 |
-
Current Context:
|
257 |
-
- DateTime: {current_datetime}
|
258 |
-
- Timezone: {timezone}
|
259 |
-
- User Locale: {user_locale}
|
260 |
-
|
261 |
-
=== ROUTING PROCESS ===
|
262 |
-
Follow these steps in order:
|
263 |
-
|
264 |
-
STEP 1: INTENT ANALYSIS
|
265 |
-
- What is the user trying to accomplish?
|
266 |
-
- What type of operation are they requesting? (create, read, update, delete, search, etc.)
|
267 |
-
- What entity/resource are they working with?
|
268 |
-
|
269 |
-
STEP 2: DATE/TIME PROCESSING
|
270 |
-
- Identify any temporal expressions in the user query
|
271 |
-
- Convert relative dates/times using the current context:
|
272 |
-
* "اليوم" (today) = current date
|
273 |
-
* "غدا" (tomorrow) = current date + 1 day
|
274 |
-
* "أمس" (yesterday) = current date - 1 day
|
275 |
-
* "الأسبوع القادم" (next week) = current date + 7 days
|
276 |
-
* "بعد ساعتين" (in 2 hours) = current time + 2 hours
|
277 |
-
* "صباحًا" (morning/AM), "مساءً" (evening/PM)
|
278 |
-
- Handle different date formats and languages
|
279 |
-
- Account for timezone differences
|
280 |
-
- Convert to ISO 8601 format: YYYY-MM-DDTHH:MM:SS
|
281 |
-
|
282 |
-
STEP 3: ENDPOINT MATCHING
|
283 |
-
- Review each endpoint in the documentation
|
284 |
-
- Match the user's intent to the endpoint's PURPOSE/DESCRIPTION
|
285 |
-
- Consider the HTTP method (GET for retrieval, POST for creation, etc.)
|
286 |
-
- Verify the endpoint can handle the user's specific request
|
287 |
-
|
288 |
-
STEP 4: PARAMETER EXTRACTION
|
289 |
-
- Identify ALL required parameters from the endpoint documentation
|
290 |
-
- Extract parameter values from the user query
|
291 |
-
- Convert data types as needed:
|
292 |
-
- Dates/times to ISO 8601 format (YYYY-MM-DDTHH:mm:ss)
|
293 |
-
- Numbers to integers
|
294 |
-
- Set appropriate defaults for optional parameters if beneficial
|
295 |
|
296 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
}},
|
312 |
-
"endpoint": "/exact_endpoint_path_from_documentation",
|
313 |
-
"method": "HTTP_METHOD",
|
314 |
-
"params": {{
|
315 |
-
"required_param_1": "extracted_or_converted_value",
|
316 |
-
"required_param_2": "extracted_or_converted_value",
|
317 |
-
"optional_param": "value_if_applicable"
|
318 |
-
}},
|
319 |
-
"missing_required": ["list", "of", "missing", "required", "parameters"],
|
320 |
-
"confidence": 0.95
|
321 |
-
}}
|
322 |
-
|
323 |
-
=== CRITICAL RULES ===
|
324 |
-
1. ONLY select endpoints that exist in the provided documentation
|
325 |
-
2. NEVER fabricate or assume endpoint parameters not in documentation
|
326 |
-
3. ALL required parameters MUST be included or listed as missing
|
327 |
-
4. Convert dates/times to ISO 8601 format (YYYY-MM-DDTHH:mm:ss)
|
328 |
-
5. If patient_id is required and not provided, add it to missing_required
|
329 |
-
6. Match endpoints by PURPOSE, not just keywords in the path
|
330 |
-
7. If multiple endpoints could work, choose the most specific one
|
331 |
-
8. If no endpoint matches, set endpoint to null and explain in reasoning
|
332 |
-
|
333 |
-
=== EXAMPLES OF GOOD MATCHING ===
|
334 |
-
- User wants "patient records" → Use patient retrieval endpoint, not general search
|
335 |
-
- User wants to "schedule appointment" → Use appointment creation endpoint
|
336 |
-
- User asks "what appointments today" → Use appointment listing with date filter
|
337 |
-
- User wants to "update medication" → Use medication update endpoint with patient_id
|
338 |
-
|
339 |
-
Think step by step and be precise with your endpoint selection and parameter extraction.:""",
|
340 |
-
input_variables=["endpoints_documentation", "user_query", "detected_language",
|
341 |
-
"extracted_keywords", "sentiment_analysis", "conversation_history",
|
342 |
-
"current_datetime", "timezone", "user_locale"]
|
343 |
)
|
344 |
-
|
345 |
-
#
|
346 |
-
# template="""
|
347 |
-
# You are a precise API routing assistant. Your job is to analyze user queries and select the correct API endpoint with proper parameters.
|
348 |
-
|
349 |
-
# === ENDPOINT DOCUMENTATION ===
|
350 |
-
# {endpoints_documentation}
|
351 |
-
|
352 |
-
# === USER REQUEST ANALYSIS ===
|
353 |
-
# User Query: {user_query}
|
354 |
-
# Language: {detected_language}
|
355 |
-
# Keywords: {extracted_keywords}
|
356 |
-
# Sentiment: {sentiment_analysis}
|
357 |
-
|
358 |
-
# === ROUTING PROCESS ===
|
359 |
-
# Follow these steps in order:
|
360 |
-
|
361 |
-
# STEP 1: INTENT ANALYSIS
|
362 |
-
# - What is the user trying to accomplish?
|
363 |
-
# - What type of operation are they requesting? (create, read, update, delete, search, etc.)
|
364 |
-
# - What entity/resource are they working with?
|
365 |
-
|
366 |
-
# STEP 2: ENDPOINT MATCHING
|
367 |
-
# - Review each endpoint in the documentation
|
368 |
-
# - Match the user's intent to the endpoint's PURPOSE/DESCRIPTION
|
369 |
-
# - Consider the HTTP method (GET for retrieval, POST for creation, etc.)
|
370 |
-
# - Verify the endpoint can handle the user's specific request
|
371 |
-
|
372 |
-
# STEP 3: PARAMETER EXTRACTION
|
373 |
-
# - Identify ALL required parameters from the endpoint documentation
|
374 |
-
# - Extract parameter values from the user query
|
375 |
-
# - Convert data types as needed (dates to ISO 8601, numbers to integers, etc.)
|
376 |
-
# - Set appropriate defaults for optional parameters if beneficial
|
377 |
-
|
378 |
-
# STEP 4: VALIDATION
|
379 |
-
# - Ensure ALL required parameters are provided or identified as missing
|
380 |
-
# - Verify parameter formats match documentation requirements
|
381 |
-
# - Check that the selected endpoint actually solves the user's problem
|
382 |
-
|
383 |
-
# === RESPONSE FORMAT ===
|
384 |
-
# Provide your analysis and decision in this exact JSON structure:
|
385 |
-
|
386 |
-
# {{
|
387 |
-
# "reasoning": {{
|
388 |
-
# "user_intent": "Brief description of what the user wants to accomplish",
|
389 |
-
# "selected_endpoint": "Why this endpoint was chosen over others",
|
390 |
-
# "parameter_mapping": "How user query maps to endpoint parameters"
|
391 |
-
# }},
|
392 |
-
# "endpoint": "/exact_endpoint_path_from_documentation",
|
393 |
-
# "method": "HTTP_METHOD",
|
394 |
-
# "params": {{
|
395 |
-
# "required_param_1": "extracted_or_converted_value",
|
396 |
-
# "required_param_2": "extracted_or_converted_value",
|
397 |
-
# "optional_param": "value_if_applicable"
|
398 |
-
# }},
|
399 |
-
# "missing_required": ["list", "of", "missing", "required", "parameters"],
|
400 |
-
# "confidence": 0.95
|
401 |
-
# }}
|
402 |
-
|
403 |
-
# === CRITICAL RULES ===
|
404 |
-
# 1. ONLY select endpoints that exist in the provided documentation
|
405 |
-
# 2. NEVER fabricate or assume endpoint parameters not in documentation
|
406 |
-
# 3. ALL required parameters MUST be included or listed as missing
|
407 |
-
# 4. Convert dates/times to ISO 8601 format (YYYY-MM-DDTHH:MM:SS)
|
408 |
-
# 5. If patient_id is required and not provided, add it to missing_required
|
409 |
-
# 6. Match endpoints by PURPOSE, not just keywords in the path
|
410 |
-
# 7. If multiple endpoints could work, choose the most specific one
|
411 |
-
# 8. If no endpoint matches, set endpoint to null and explain in reasoning
|
412 |
-
|
413 |
-
# === EXAMPLES OF GOOD MATCHING ===
|
414 |
-
# - User wants "patient records" → Use patient retrieval endpoint, not general search
|
415 |
-
# - User wants to "schedule appointment" → Use appointment creation endpoint
|
416 |
-
# - User asks "what appointments today" → Use appointment listing with date filter
|
417 |
-
# - User wants to "update medication" → Use medication update endpoint with patient_id
|
418 |
-
|
419 |
-
# Think step by step and be precise with your endpoint selection and parameter extraction.:""",
|
420 |
-
# input_variables=["endpoints_documentation", "user_query", "detected_language",
|
421 |
-
# "extracted_keywords", "sentiment_analysis", "conversation_history"]
|
422 |
-
# )
|
423 |
-
|
424 |
-
# Conversational response prompt
|
425 |
self.conversation_template = PromptTemplate(
|
426 |
template="""
|
427 |
You are a friendly and professional healthcare chatbot assistant.
|
@@ -465,8 +319,8 @@ class HealthcareChatbot:
|
|
465 |
input_variables=["user_query", "detected_language", "sentiment_analysis", "conversation_history"]
|
466 |
)
|
467 |
|
468 |
-
# API
|
469 |
-
self.
|
470 |
template="""
|
471 |
You are a professional healthcare assistant. Answer the user's question using the provided API data.
|
472 |
|
@@ -478,7 +332,7 @@ class HealthcareChatbot:
|
|
478 |
{api_response}
|
479 |
|
480 |
=== INSTRUCTIONS ===
|
481 |
-
|
482 |
1. Read and understand the API response data above
|
483 |
2. Use ONLY the actual data from the API response - never make up information
|
484 |
3. Respond in {detected_language} language only
|
@@ -487,13 +341,13 @@ class HealthcareChatbot:
|
|
487 |
6. Convert technical data to simple, everyday language
|
488 |
|
489 |
=== DATE AND TIME FORMATTING ===
|
490 |
-
|
491 |
When you see date_time fields like '2025-05-30T10:28:10':
|
492 |
-
- For English: Convert to "May 30, 2025 at 10:28 AM"
|
493 |
- For Arabic: Convert to "٣٠ مايو ٢٠٢٥ في الساعة ١٠:٢٨ صباحاً"
|
494 |
|
495 |
=== RESPONSE EXAMPLES ===
|
496 |
-
|
497 |
For appointment confirmations:
|
498 |
- English: "Great! I've got your appointment set up for May 30, 2025 at 10:28 AM. Everything looks good!"
|
499 |
- Arabic: "ممتاز! موعدك محجوز يوم ٣٠ مايو ٢٠٢٥ الساعة ١٠:٢٨ صباحاً. كل شيء جاهز!"
|
@@ -508,13 +362,13 @@ class HealthcareChatbot:
|
|
508 |
- Sound helpful and caring, not robotic or formal
|
509 |
|
510 |
=== LANGUAGE FORMATTING ===
|
511 |
-
|
512 |
For Arabic responses:
|
513 |
- Use Arabic numerals: ٠١٢٣٤٥٦٧٨٩
|
514 |
- Use Arabic month names: يناير، فبراير، مارس، أبريل، مايو، يونيو، يوليو، أغسطس، سبتمبر، أكتوبر، نوفمبر، ديسمبر
|
515 |
- Friendly, warm Arabic tone
|
516 |
|
517 |
-
For English responses:
|
518 |
- Use standard English numerals
|
519 |
- 12-hour time format with AM/PM
|
520 |
- Friendly, conversational English tone
|
@@ -530,77 +384,11 @@ class HealthcareChatbot:
|
|
530 |
""",
|
531 |
input_variables=["user_query", "api_response", "detected_language", "sentiment_analysis"]
|
532 |
)
|
533 |
-
|
534 |
-
|
535 |
-
# You are a professional healthcare assistant. Your task is to carefully analyze the API data and respond to the user's question accurately.
|
536 |
-
|
537 |
-
# User Query: {user_query}
|
538 |
-
# User Sentiment: {sentiment_analysis}
|
539 |
-
# Response Language: {detected_language}
|
540 |
-
|
541 |
-
# API Response Data:
|
542 |
-
# {api_response}
|
543 |
-
|
544 |
-
# === CRITICAL INSTRUCTIONS ===
|
545 |
-
|
546 |
-
# 1. FIRST: Carefully read and analyze the API response data above
|
547 |
-
# 2. SECOND: Identify all date_time fields in the format 'YYYY-MM-DDTHH:MM:SS'
|
548 |
-
# 3. THIRD: Extract the EXACT dates and times from the API response - DO NOT use any example dates
|
549 |
-
# 4. FOURTH: Convert these extracted dates to the user-friendly format specified below
|
550 |
-
# 5. FIFTH: Respond ONLY in {detected_language} language
|
551 |
-
# 6. Use a warm, friendly, conversational tone like talking to a friend
|
552 |
-
|
553 |
-
# === DATE EXTRACTION AND CONVERSION ===
|
554 |
-
|
555 |
-
# Step 1: Find date_time fields in the API response (format: 'YYYY-MM-DDTHH:MM:SS')
|
556 |
-
# Step 2: Convert ONLY the actual extracted dates using these rules:
|
557 |
-
|
558 |
-
# For English:
|
559 |
-
# - Convert 'YYYY-MM-DDTHH:MM:SS' to readable format
|
560 |
-
# - Example: '2025-06-01T08:00:00' becomes "June 1, 2025 at 8:00 AM"
|
561 |
-
# - Use 12-hour format with AM/PM
|
562 |
-
|
563 |
-
# For Arabic:
|
564 |
-
# - Convert to Arabic numerals and month names
|
565 |
-
# - Example: '2025-06-01T08:00:00' becomes "١ يونيو ٢٠٢٥ في الساعة ٨:٠٠ صباحاً"
|
566 |
-
# - Arabic months: يناير، فبراير، مارس، أبريل، مايو، يونيو، يوليو، أغسطس، سبتمبر، أكتوبر، نوفمبر، ديسمبر
|
567 |
-
# - Arabic numerals: ٠١٢٣٤٥٦٧٨٩
|
568 |
-
|
569 |
-
# === RESPONSE APPROACH ===
|
570 |
-
|
571 |
-
# 1. Analyze what the user is asking for
|
572 |
-
# 2. Find the relevant information in the API response
|
573 |
-
# 3. Extract actual dates/times from the API data
|
574 |
-
# 4. Convert technical information to simple language
|
575 |
-
# 5. Respond warmly and helpfully
|
576 |
-
|
577 |
-
# === TONE AND LANGUAGE ===
|
578 |
-
|
579 |
-
# English responses:
|
580 |
-
# - Use phrases like: "Great!", "Perfect!", "All set!", "Here's what I found:"
|
581 |
-
# - Be conversational and reassuring
|
582 |
-
|
583 |
-
# Arabic responses:
|
584 |
-
# - Use phrases like: "ممتاز!", "رائع!", "تمام!", "إليك ما وجدته:"
|
585 |
-
# - Be warm and helpful in Arabic style
|
586 |
-
|
587 |
-
# === IMPORTANT REMINDERS ===
|
588 |
-
# - NEVER use example dates from this prompt
|
589 |
-
# - ALWAYS extract dates from the actual API response data
|
590 |
-
# - If no dates exist in API response, don't mention any dates
|
591 |
-
# - Stay focused on answering the user's specific question
|
592 |
-
# - Use only information that exists in the API response
|
593 |
-
|
594 |
-
# Now, carefully analyze the API response above and generate a helpful response to the user's query using ONLY the actual data provided.
|
595 |
-
# """,
|
596 |
-
# input_variables=["user_query", "api_response", "detected_language", "sentiment_analysis"]
|
597 |
-
# )
|
598 |
-
|
599 |
-
# Create chains
|
600 |
-
self.intent_chain = LLMChain(llm=self.llm, prompt=self.intent_classifier_template)
|
601 |
self.router_chain = LLMChain(llm=self.llm, prompt=self.router_prompt_template)
|
602 |
self.conversation_chain = LLMChain(llm=self.llm, prompt=self.conversation_template)
|
603 |
-
self.api_response_chain = LLMChain(llm=self.llm, prompt=self.
|
604 |
|
605 |
def detect_language(self, text):
|
606 |
"""Detect language of the input text"""
|
@@ -609,7 +397,7 @@ class HealthcareChatbot:
|
|
609 |
result = self.language_classifier(text)
|
610 |
detected_lang = result[0][0]['label']
|
611 |
confidence = result[0][0]['score']
|
612 |
-
|
613 |
if detected_lang in ['ar', 'arabic']:
|
614 |
return "arabic"
|
615 |
elif detected_lang in ['en', 'english']:
|
@@ -618,12 +406,12 @@ class HealthcareChatbot:
|
|
618 |
return "english" # Default to English for unsupported languages
|
619 |
except:
|
620 |
pass
|
621 |
-
|
622 |
# Fallback: Basic Arabic detection
|
623 |
arabic_pattern = re.compile(r'[\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF]+')
|
624 |
if arabic_pattern.search(text):
|
625 |
return "arabic"
|
626 |
-
|
627 |
return "english"
|
628 |
|
629 |
def analyze_sentiment(self, text):
|
@@ -637,7 +425,7 @@ class HealthcareChatbot:
|
|
637 |
}
|
638 |
except:
|
639 |
pass
|
640 |
-
|
641 |
return {"sentiment": "NEUTRAL", "score": 0.5}
|
642 |
|
643 |
def extract_keywords(self, text):
|
@@ -653,12 +441,12 @@ class HealthcareChatbot:
|
|
653 |
"""Get recent conversation history as context"""
|
654 |
if not self.conversation_history:
|
655 |
return "No previous conversation"
|
656 |
-
|
657 |
context = []
|
658 |
for item in self.conversation_history[-3:]: # Last 3 exchanges
|
659 |
context.append(f"User: {item['user_message']}")
|
660 |
context.append(f"Bot: {item['bot_response'][:100]}...") # Truncate long responses
|
661 |
-
|
662 |
return " | ".join(context)
|
663 |
|
664 |
def add_to_history(self, user_message, bot_response, response_type):
|
@@ -669,52 +457,126 @@ class HealthcareChatbot:
|
|
669 |
'bot_response': bot_response,
|
670 |
'response_type': response_type
|
671 |
})
|
672 |
-
|
673 |
# Keep only recent history
|
674 |
if len(self.conversation_history) > self.max_history_length:
|
675 |
self.conversation_history = self.conversation_history[-self.max_history_length:]
|
676 |
|
677 |
-
def
|
678 |
-
"""
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
686 |
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
|
|
|
|
|
|
|
|
691 |
cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
|
|
|
|
|
692 |
cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
|
693 |
-
|
|
|
694 |
try:
|
695 |
-
|
696 |
-
|
697 |
except json.JSONDecodeError:
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
711 |
except Exception as e:
|
712 |
-
print(f"Error
|
713 |
return {
|
714 |
"intent": "CONVERSATION",
|
715 |
"confidence": 0.5,
|
716 |
-
"reasoning": f"
|
717 |
-
"
|
|
|
|
|
|
|
718 |
}
|
719 |
|
720 |
def handle_conversation(self, user_query, detected_language, sentiment_result):
|
@@ -726,9 +588,9 @@ class HealthcareChatbot:
|
|
726 |
"sentiment_analysis": json.dumps(sentiment_result),
|
727 |
"conversation_history": self.get_conversation_context()
|
728 |
})
|
729 |
-
|
730 |
return result["text"].strip()
|
731 |
-
|
732 |
except Exception as e:
|
733 |
# Fallback response
|
734 |
if detected_language == "arabic":
|
@@ -742,13 +604,12 @@ class HealthcareChatbot:
|
|
742 |
endpoint_method = data.get('method')
|
743 |
endpoint_params = data.get('params', {}).copy()
|
744 |
|
745 |
-
print('Sending the api request')
|
746 |
print(f"🔗 Making API call to {endpoint_method} {self.BASE_URL + endpoint_url} with params: {endpoint_params}")
|
747 |
-
|
748 |
# Inject patient_id if needed
|
749 |
if 'patient_id' in endpoint_params:
|
750 |
endpoint_params['patient_id'] = self.user_id
|
751 |
-
|
752 |
retries = 0
|
753 |
response = None
|
754 |
while retries < self.max_retries:
|
@@ -768,11 +629,11 @@ class HealthcareChatbot:
|
|
768 |
headers=self.headers,
|
769 |
timeout=10
|
770 |
)
|
771 |
-
|
772 |
response.raise_for_status()
|
773 |
-
print('Backend Response
|
774 |
return response.json()
|
775 |
-
|
776 |
except requests.exceptions.RequestException as e:
|
777 |
retries += 1
|
778 |
if retries >= self.max_retries:
|
@@ -781,148 +642,33 @@ class HealthcareChatbot:
|
|
781 |
"details": str(e),
|
782 |
"status_code": getattr(e.response, 'status_code', None) if hasattr(e, 'response') else None
|
783 |
}
|
784 |
-
|
785 |
time.sleep(self.retry_delay)
|
786 |
-
def parse_relative_date(self, text, detected_language):
|
787 |
-
"""
|
788 |
-
Parse relative dates from text using a combination of methods
|
789 |
-
"""
|
790 |
-
today = datetime.now()
|
791 |
-
|
792 |
-
# Handle common relative date patterns in English and Arabic
|
793 |
-
tomorrow_patterns = {
|
794 |
-
'english': [r'\btomorrow\b', r'\bnext day\b'],
|
795 |
-
'arabic': [r'\bغدا\b', r'\bبكرة\b', r'\bغدًا\b', r'\bالغد\b']
|
796 |
-
}
|
797 |
-
|
798 |
-
next_week_patterns = {
|
799 |
-
'english': [r'\bnext week\b'],
|
800 |
-
'arabic': [r'\bالأسبوع القادم\b', r'\bالأسبوع المقبل\b', r'\bالاسبوع الجاي\b']
|
801 |
-
}
|
802 |
-
|
803 |
-
# Check for "tomorrow" patterns
|
804 |
-
for pattern in tomorrow_patterns.get(detected_language, []) + tomorrow_patterns.get('english', []):
|
805 |
-
if re.search(pattern, text, re.IGNORECASE):
|
806 |
-
return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
|
807 |
-
|
808 |
-
# Check for "next week" patterns
|
809 |
-
for pattern in next_week_patterns.get(detected_language, []) + next_week_patterns.get('english', []):
|
810 |
-
if re.search(pattern, text, re.IGNORECASE):
|
811 |
-
return (today + timedelta(days=7)).strftime('%Y-%m-%dT%H:%M:%S')
|
812 |
-
|
813 |
-
# If NER model is available, use it to extract date entities
|
814 |
-
if self.date_parser and detected_language == 'english':
|
815 |
-
try:
|
816 |
-
date_entities = self.date_parser(text)
|
817 |
-
for entity in date_entities:
|
818 |
-
if entity['entity_group'] == 'DATE':
|
819 |
-
# Here you would need more complex date parsing logic
|
820 |
-
# This is just a placeholder
|
821 |
-
print(f"Found date entity: {entity['word']}")
|
822 |
-
# For now, just default to tomorrow if we detect any date
|
823 |
-
return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
|
824 |
-
except Exception as e:
|
825 |
-
print(f"Error in date parsing: {e}")
|
826 |
-
|
827 |
-
# Default return None if no date pattern is recognized
|
828 |
-
return None
|
829 |
-
|
830 |
|
831 |
-
def handle_api_action(self, user_query, detected_language, sentiment_result, keywords):
|
832 |
-
"""Handle API-based actions"""
|
833 |
try:
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
839 |
-
# Route the query to determine API endpoint
|
840 |
-
router_result = self.router_chain.invoke({
|
841 |
-
"endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2),
|
842 |
-
"user_query": user_query,
|
843 |
-
"detected_language": detected_language,
|
844 |
-
"extracted_keywords": ", ".join(keywords),
|
845 |
-
"sentiment_analysis": json.dumps(sentiment_result),
|
846 |
-
"conversation_history": self.get_conversation_context(),
|
847 |
-
"current_datetime": datetime.now().strftime('%Y-%m-%dT%H:%M:%S'),
|
848 |
-
"timezone": "UTC",
|
849 |
-
"user_locale": "en-US"
|
850 |
-
})
|
851 |
-
|
852 |
-
# Parse router response
|
853 |
-
route_text = router_result["text"]
|
854 |
-
# cleaned_response = re.sub(r'//.*?$', '', route_text, flags=re.MULTILINE)
|
855 |
-
# cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
|
856 |
-
# cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
|
857 |
-
|
858 |
-
# try:
|
859 |
-
# parsed_route = json.loads(cleaned_response)
|
860 |
-
# except json.JSONDecodeError:
|
861 |
-
# json_match = re.search(r'\{.*?\}', cleaned_response, re.DOTALL)
|
862 |
-
# if json_match:
|
863 |
-
# parsed_route = json.loads(json_match.group(0))
|
864 |
-
# else:
|
865 |
-
# raise ValueError("Could not parse routing response")
|
866 |
-
|
867 |
-
# print(f"🔍 Parsed route: {parsed_route}")
|
868 |
-
cleaned_response = route_text
|
869 |
-
|
870 |
-
# Remove any comments (both single-line and multi-line)
|
871 |
-
cleaned_response = re.sub(r'//.*?$', '', cleaned_response, flags=re.MULTILINE)
|
872 |
-
cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
|
873 |
-
|
874 |
-
# Remove any trailing commas
|
875 |
-
cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
|
876 |
-
|
877 |
-
# Try different methods to parse the JSON response
|
878 |
-
try:
|
879 |
-
# First attempt: direct JSON parsing of cleaned response
|
880 |
-
parsed_route = json.loads(cleaned_response)
|
881 |
-
except json.JSONDecodeError:
|
882 |
-
try:
|
883 |
-
# Second attempt: extract JSON from markdown code block
|
884 |
-
json_match = re.search(r'```(?:json)?\s*(\{.*?\})\s*```', cleaned_response, re.DOTALL)
|
885 |
-
if json_match:
|
886 |
-
parsed_route = json.loads(json_match.group(1))
|
887 |
-
except (json.JSONDecodeError, AttributeError):
|
888 |
-
try:
|
889 |
-
# Third attempt: find JSON-like content using regex
|
890 |
-
json_pattern = r'\{\s*"endpoint"\s*:.*?\}'
|
891 |
-
json_match = re.search(json_pattern, cleaned_response, re.DOTALL)
|
892 |
-
if json_match:
|
893 |
-
json_str = json_match.group(0)
|
894 |
-
# Additional cleaning for the extracted JSON
|
895 |
-
json_str = re.sub(r'//.*?$', '', json_str, flags=re.MULTILINE)
|
896 |
-
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
|
897 |
-
parsed_route = json.loads(json_str)
|
898 |
-
except (json.JSONDecodeError, AttributeError):
|
899 |
-
print(f"Failed to parse JSON. Raw response: {route_text}")
|
900 |
-
print(f"Cleaned response: {cleaned_response}")
|
901 |
-
raise ValueError("Could not extract valid JSON from LLM response")
|
902 |
-
|
903 |
-
if not parsed_route:
|
904 |
-
raise ValueError("Failed to parse LLM response into valid JSON")
|
905 |
-
|
906 |
-
# Replace any placeholder values and inject parsed dates if available
|
907 |
-
if 'params' in parsed_route:
|
908 |
-
if 'patient_id' in parsed_route['params']:
|
909 |
-
parsed_route['params']['patient_id'] = self.user_id
|
910 |
-
else:
|
911 |
-
parsed_route['params']['patient_id'] = self.user_id
|
912 |
-
|
913 |
# Inject parsed date if available and a date parameter exists
|
914 |
-
|
915 |
-
|
916 |
-
|
917 |
-
|
918 |
-
|
919 |
-
|
920 |
-
|
|
|
|
|
|
|
921 |
|
922 |
# Make backend API call
|
923 |
-
api_response = self.backend_call(
|
924 |
-
|
925 |
print("🔗 API response received:", api_response)
|
|
|
926 |
# Generate user-friendly response
|
927 |
user_response_result = self.api_response_chain.invoke({
|
928 |
"user_query": user_query,
|
@@ -931,21 +677,21 @@ class HealthcareChatbot:
|
|
931 |
"sentiment_analysis": json.dumps(sentiment_result),
|
932 |
})
|
933 |
|
934 |
-
print("🔗
|
935 |
-
|
936 |
return {
|
937 |
"response": user_response_result["text"].strip(),
|
938 |
"api_data": api_response,
|
939 |
-
"routing_info":
|
940 |
}
|
941 |
-
|
942 |
except Exception as e:
|
943 |
# Fallback error response
|
944 |
if detected_language == "arabic":
|
945 |
error_msg = "أعتذر، لم أتمكن من معالجة طلبك. يرجى المحاولة مرة أخرى أو صياغة السؤال بطريقة مختلفة."
|
946 |
else:
|
947 |
error_msg = "I apologize, I couldn't process your request. Please try again or rephrase your question."
|
948 |
-
|
949 |
return {
|
950 |
"response": error_msg,
|
951 |
"api_data": {"error": str(e)},
|
@@ -953,148 +699,202 @@ class HealthcareChatbot:
|
|
953 |
}
|
954 |
|
955 |
def chat(self, user_message: str) -> ChatResponse:
|
956 |
-
"""Main chat method that handles user messages"""
|
957 |
start_time = time.time()
|
958 |
-
|
959 |
# Check for exit commands
|
960 |
-
|
961 |
-
|
962 |
-
|
963 |
-
|
964 |
-
|
965 |
-
|
966 |
-
|
967 |
-
|
968 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
969 |
try:
|
970 |
-
|
|
|
|
|
|
|
|
|
971 |
detected_language = self.detect_language(user_message)
|
972 |
sentiment_result = self.analyze_sentiment(user_message)
|
973 |
keywords = self.extract_keywords(user_message)
|
974 |
-
|
975 |
-
print(f"
|
976 |
-
|
977 |
-
|
978 |
-
|
979 |
-
|
980 |
-
|
981 |
-
|
982 |
-
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
|
987 |
-
|
988 |
-
|
989 |
-
|
990 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
991 |
response_type="api_action",
|
992 |
-
message=
|
993 |
api_call_made=True,
|
994 |
-
api_data=
|
995 |
language=detected_language
|
996 |
)
|
997 |
-
|
998 |
else:
|
999 |
-
#
|
1000 |
-
print("
|
1001 |
-
|
1002 |
-
|
1003 |
-
|
1004 |
-
response_id=
|
1005 |
response_type="conversation",
|
1006 |
-
message=
|
1007 |
api_call_made=False,
|
1008 |
language=detected_language
|
1009 |
)
|
1010 |
-
|
1011 |
-
# Add to conversation history
|
1012 |
-
self.add_to_history(user_message, response.message, response.response_type)
|
1013 |
-
|
1014 |
-
print(f"⏱️ Processing time: {time.time() - start_time:.2f}s")
|
1015 |
-
return response
|
1016 |
-
|
1017 |
except Exception as e:
|
1018 |
-
print(f"❌ Error in chat
|
1019 |
-
|
1020 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1021 |
return ChatResponse(
|
1022 |
-
response_id=
|
1023 |
response_type="conversation",
|
1024 |
-
message=
|
1025 |
api_call_made=False,
|
1026 |
-
language=
|
1027 |
)
|
|
|
|
|
|
|
|
|
1028 |
|
1029 |
-
def
|
1030 |
-
"""
|
1031 |
-
|
1032 |
-
|
1033 |
-
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
-
|
1038 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1039 |
continue
|
|
|
|
|
|
|
1040 |
|
1041 |
-
|
1042 |
-
|
1043 |
-
|
1044 |
-
|
1045 |
-
# Display response
|
1046 |
-
print(f"\n🏥 Healthcare Bot: {response.message}")
|
1047 |
|
1048 |
-
# Show additional info if API call was made
|
1049 |
-
if response.api_call_made and response.api_data:
|
1050 |
-
if "error" not in response.api_data:
|
1051 |
-
print("✅ Successfully retrieved information from healthcare system")
|
1052 |
-
else:
|
1053 |
-
print("⚠️ There was an issue accessing the healthcare system")
|
1054 |
|
1055 |
-
# Check for exit
|
1056 |
-
if "Goodbye" in response.message or "وداعاً" in response.message:
|
1057 |
-
break
|
1058 |
|
1059 |
-
|
1060 |
-
|
1061 |
-
break
|
1062 |
-
except Exception as e:
|
1063 |
-
print(f"\n❌ Unexpected error: {e}")
|
1064 |
-
print("The chat session will continue...")
|
1065 |
-
# Create a simple function to start the chatbot
|
1066 |
-
# def start_healthcare_chatbot():
|
1067 |
-
# """Initialize and start the healthcare chatbot"""
|
1068 |
# try:
|
|
|
1069 |
# chatbot = HealthcareChatbot()
|
1070 |
-
# chatbot.
|
|
|
|
|
|
|
1071 |
# except Exception as e:
|
1072 |
-
# print(f"
|
1073 |
-
# print("
|
1074 |
|
1075 |
|
1076 |
-
# Test the chatbot
|
1077 |
# if __name__ == "__main__":
|
1078 |
-
|
1079 |
-
|
1080 |
-
|
1081 |
-
# Test conversational message
|
1082 |
-
# print("\n=== TESTING CONVERSATIONAL MESSAGE ===")
|
1083 |
-
# conv_response = chatbot.chat("Hello, how are you today?")
|
1084 |
-
# print(f"Response: {conv_response.message}")
|
1085 |
-
# print(f"Type: {conv_response.response_type}")
|
1086 |
-
|
1087 |
-
# Test API action message
|
1088 |
-
# print("\n=== TESTING API ACTION MESSAGE ===")
|
1089 |
-
# api_response = chatbot.chat("I want to book an appointment tomorrow at 2 PM")
|
1090 |
-
# print(f"Response: {api_response.message}")
|
1091 |
-
# print(f"Type: {api_response.response_type}")
|
1092 |
-
# print(f"API Called: {api_response.api_call_made}")
|
1093 |
-
|
1094 |
-
# Start interactive session (uncomment to run)
|
1095 |
-
# start_healthcare_chatbot()
|
1096 |
-
|
1097 |
-
# Fast api section
|
1098 |
from fastapi import FastAPI, HTTPException
|
1099 |
from pydantic import BaseModel
|
1100 |
from typing import Dict, Any, Optional
|
@@ -1112,12 +912,6 @@ agent = HealthcareChatbot()
|
|
1112 |
class QueryRequest(BaseModel):
|
1113 |
query: str
|
1114 |
|
1115 |
-
class QueryResponse(BaseModel):
|
1116 |
-
routing_info: Dict[str, Any]
|
1117 |
-
api_response: Dict[str, Any]
|
1118 |
-
user_friendly_response: str
|
1119 |
-
detected_language: str
|
1120 |
-
sentiment: Dict[str, Any]
|
1121 |
|
1122 |
@app.post("/query")
|
1123 |
async def process_query(request: QueryRequest):
|
@@ -1125,7 +919,7 @@ async def process_query(request: QueryRequest):
|
|
1125 |
Process a user query and return a response
|
1126 |
"""
|
1127 |
try:
|
1128 |
-
response = agent.chat(request.query)
|
1129 |
return response
|
1130 |
except Exception as e:
|
1131 |
raise HTTPException(status_code=500, detail=str(e))
|
|
|
27 |
from endpoints_documentation import endpoints_documentation
|
28 |
|
29 |
# Set environment variables for HuggingFace
|
|
|
|
|
|
|
|
|
30 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
31 |
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
|
32 |
|
|
|
51 |
timestamp: datetime = Field(default_factory=datetime.now, description="When the response was generated")
|
52 |
|
53 |
|
54 |
+
class RouterResponse(BaseModel):
|
55 |
+
"""Data model for router chain response"""
|
56 |
+
intent: str = Field(..., description="Either 'API_ACTION' or 'CONVERSATION'")
|
57 |
+
confidence: float = Field(..., description="Confidence score between 0.0 and 1.0")
|
58 |
+
reasoning: str = Field(..., description="Explanation of the decision")
|
59 |
+
endpoint: Optional[str] = Field(default=None, description="API endpoint if intent is API_ACTION")
|
60 |
+
method: Optional[str] = Field(default=None, description="HTTP method if intent is API_ACTION")
|
61 |
+
params: Dict[str, Any] = Field(default_factory=dict, description="Parameters for API call")
|
62 |
+
missing_required: List[str] = Field(default_factory=list, description="Missing required parameters")
|
63 |
|
64 |
|
65 |
class HealthcareChatbot:
|
|
|
67 |
self.endpoints_documentation = endpoints_documentation
|
68 |
self.ollama_base_url = "http://localhost:11434"
|
69 |
self.model_name = "gemma3"
|
70 |
+
self.BASE_URL = 'https://d623-105-196-69-205.ngrok-free.app'
|
71 |
self.headers = {'Content-type': 'application/json'}
|
72 |
+
self.user_id = 'e14761ad-c1ba-4a10-a814-c1b12bcdbb41'
|
73 |
self.max_retries = 3
|
74 |
self.retry_delay = 2
|
75 |
+
|
76 |
# Store conversation history
|
77 |
self.conversation_history = []
|
78 |
self.max_history_length = 10 # Keep last 10 exchanges
|
79 |
+
|
80 |
# Initialize components
|
81 |
self._initialize_language_tools()
|
82 |
self._initialize_llm()
|
83 |
self._initialize_parsers_and_chains()
|
84 |
self._initialize_date_parser()
|
85 |
+
|
86 |
print("Healthcare Chatbot initialized successfully!")
|
87 |
self._print_welcome_message()
|
88 |
|
|
|
110 |
try:
|
111 |
self.embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
|
112 |
self.language_classifier = pipeline(
|
113 |
+
"text-classification",
|
114 |
model="papluca/xlm-roberta-base-language-detection",
|
115 |
top_k=1
|
116 |
)
|
|
|
150 |
)
|
151 |
|
152 |
def _initialize_parsers_and_chains(self):
|
153 |
+
"""Initialize all prompt templates and chains - REVAMPED to 3 chains only"""
|
154 |
+
self.json_parser = JsonOutputParser(pydantic_object=RouterResponse)
|
155 |
+
|
156 |
+
# UNIFIED ROUTER CHAIN - Handles both intent classification AND API routing
|
157 |
+
self.router_prompt_template = PromptTemplate(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
template="""
|
159 |
+
You are an intelligent healthcare chatbot router. Your job is to:
|
160 |
+
1. Understand what the user wants (intent classification)
|
161 |
+
2. If they need API action, determine the exact endpoint and parameters
|
162 |
|
163 |
+
=== CONTEXT ===
|
164 |
+
User Query: {user_query}
|
165 |
+
Language: {detected_language}
|
166 |
+
Keywords: {extracted_keywords}
|
167 |
+
Sentiment: {sentiment_analysis}
|
168 |
+
Conversation History: {conversation_history}
|
169 |
+
|
170 |
+
=== API ENDPOINTS DOCUMENTATION ===
|
171 |
+
{endpoints_documentation}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
=== DECISION PROCESS ===
|
174 |
+
|
175 |
+
STEP 1: INTENT ANALYSIS
|
176 |
+
- What is the user trying to accomplish?
|
177 |
+
- Is this a casual conversation/greeting/general question? → CONVERSATION
|
178 |
+
- Is this a specific request that requires backend data/action? → API_ACTION
|
179 |
+
|
180 |
+
Common CONVERSATION intents:
|
181 |
+
- Greetings, thank you, goodbye
|
182 |
+
- General health questions (not personal data requests)
|
183 |
+
- Casual chat, complaints, compliments
|
184 |
+
- Questions about the bot's capabilities
|
185 |
+
|
186 |
+
Common API_ACTION intents:
|
187 |
+
- "Book an appointment", "Schedule appointment"
|
188 |
+
- "Show my appointments", "What are my appointments"
|
189 |
+
- "Cancel my appointment", "Reschedule appointment"
|
190 |
+
- "Show my medical records", "What's in my file"
|
191 |
+
- "Update my information"
|
192 |
+
- Any request for personal healthcare data or actions
|
193 |
+
|
194 |
+
STEP 2: IF API_ACTION - ENDPOINT SELECTION
|
195 |
+
- Review each endpoint in the documentation
|
196 |
+
- Match user intent to endpoint PURPOSE/DESCRIPTION
|
197 |
+
- Consider HTTP method (GET for retrieval, POST for creation)
|
198 |
+
- Extract and validate parameters
|
199 |
+
|
200 |
+
STEP 3: PARAMETER EXTRACTION (API_ACTION only)
|
201 |
+
- Identify ALL required parameters from endpoint documentation
|
202 |
+
- Extract values from user query
|
203 |
+
- Convert dates to ISO 8601 format (YYYY-MM-DDTHH:MM:SS)
|
204 |
+
- List any missing required parameters
|
205 |
+
- Add patient_id to params if endpoint requires it
|
206 |
+
|
207 |
+
=== RESPONSE FORMAT ===
|
208 |
+
You MUST respond with valid JSON in this exact structure:
|
209 |
|
210 |
+
{{
|
211 |
+
"intent": "CONVERSATION" or "API_ACTION",
|
212 |
+
"confidence": 0.95,
|
213 |
+
"reasoning": "Brief explanation of why this intent was chosen and what the user wants",
|
214 |
+
"endpoint": "/endpoint/path" or null,
|
215 |
+
"method": "GET/POST/PUT/DELETE" or null,
|
216 |
+
"params": {{
|
217 |
+
"param1": "value1",
|
218 |
+
"param2": "value2"
|
219 |
+
}},
|
220 |
+
"missing_required": ["list", "of", "missing", "required", "params"]
|
221 |
+
}}
|
222 |
|
223 |
+
=== EXAMPLES ===
|
224 |
|
225 |
+
User: "Hello, how are you?"
|
226 |
+
{{
|
227 |
+
"intent": "CONVERSATION",
|
228 |
+
"confidence": 0.98,
|
229 |
+
"reasoning": "User is greeting - casual conversation",
|
230 |
+
"endpoint": null,
|
231 |
+
"method": null,
|
232 |
+
"params": {{}},
|
233 |
+
"missing_required": []
|
234 |
+
}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
+
User: "I want to book an appointment for tomorrow"
|
237 |
+
{{
|
238 |
+
"intent": "API_ACTION",
|
239 |
+
"confidence": 0.95,
|
240 |
+
"reasoning": "User wants to schedule appointment - requires API call",
|
241 |
+
"endpoint": "/appointments",
|
242 |
+
"method": "POST",
|
243 |
+
"params": {{
|
244 |
+
"patient_id": "will_be_injected",
|
245 |
+
"appointment_date": "2025-06-02T10:00:00"
|
246 |
+
}},
|
247 |
+
"missing_required": []
|
248 |
+
}}
|
249 |
+
|
250 |
+
User: "What are my appointments?"
|
251 |
+
{{
|
252 |
+
"intent": "API_ACTION",
|
253 |
+
"confidence": 0.97,
|
254 |
+
"reasoning": "User wants to view their appointments - requires data retrieval",
|
255 |
+
"endpoint": "/appointments",
|
256 |
+
"method": "GET",
|
257 |
+
"params": {{
|
258 |
+
"patient_id": "will_be_injected"
|
259 |
+
}},
|
260 |
+
"missing_required": []
|
261 |
+
}}
|
262 |
|
263 |
+
=== CRITICAL RULES ===
|
264 |
+
1. ONLY use endpoints that exist in the provided documentation
|
265 |
+
2. Focus on user's PRIMARY intent - what do they actually want?
|
266 |
+
3. When in doubt between CONVERSATION and API_ACTION, lean toward CONVERSATION
|
267 |
+
4. Always include confidence score based on clarity of intent
|
268 |
+
5. For API_ACTION, endpoint and method must be specified
|
269 |
+
6. Convert relative dates (tomorrow, next week) to specific ISO dates
|
270 |
+
7. If multiple endpoints could work, choose the most specific one
|
271 |
+
8. Missing required parameters should be listed even if you can't extract them
|
272 |
+
|
273 |
+
Analyze the user query and respond with the appropriate JSON:""",
|
274 |
+
input_variables=["user_query", "detected_language", "extracted_keywords",
|
275 |
+
"sentiment_analysis", "conversation_history", "endpoints_documentation"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
276 |
)
|
277 |
+
|
278 |
+
# CONVERSATION CHAIN - Handles conversational responses
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
self.conversation_template = PromptTemplate(
|
280 |
template="""
|
281 |
You are a friendly and professional healthcare chatbot assistant.
|
|
|
319 |
input_variables=["user_query", "detected_language", "sentiment_analysis", "conversation_history"]
|
320 |
)
|
321 |
|
322 |
+
# API RESPONSE CHAIN - Formats API responses for users
|
323 |
+
self.api_response_template = PromptTemplate(
|
324 |
template="""
|
325 |
You are a professional healthcare assistant. Answer the user's question using the provided API data.
|
326 |
|
|
|
332 |
{api_response}
|
333 |
|
334 |
=== INSTRUCTIONS ===
|
335 |
+
|
336 |
1. Read and understand the API response data above
|
337 |
2. Use ONLY the actual data from the API response - never make up information
|
338 |
3. Respond in {detected_language} language only
|
|
|
341 |
6. Convert technical data to simple, everyday language
|
342 |
|
343 |
=== DATE AND TIME FORMATTING ===
|
344 |
+
|
345 |
When you see date_time fields like '2025-05-30T10:28:10':
|
346 |
+
- For English: Convert to "May 30, 2025 at 10:28 AM"
|
347 |
- For Arabic: Convert to "٣٠ مايو ٢٠٢٥ في الساعة ١٠:٢٨ صباحاً"
|
348 |
|
349 |
=== RESPONSE EXAMPLES ===
|
350 |
+
|
351 |
For appointment confirmations:
|
352 |
- English: "Great! I've got your appointment set up for May 30, 2025 at 10:28 AM. Everything looks good!"
|
353 |
- Arabic: "ممتاز! موعدك محجوز يوم ٣٠ مايو ٢٠٢٥ الساعة ١٠:٢٨ صباحاً. كل شيء جاهز!"
|
|
|
362 |
- Sound helpful and caring, not robotic or formal
|
363 |
|
364 |
=== LANGUAGE FORMATTING ===
|
365 |
+
|
366 |
For Arabic responses:
|
367 |
- Use Arabic numerals: ٠١٢٣٤٥٦٧٨٩
|
368 |
- Use Arabic month names: يناير، فبراير، مارس، أبريل، مايو، يونيو، يوليو، أغسطس، سبتمبر، أكتوبر، نوفمبر، ديسمبر
|
369 |
- Friendly, warm Arabic tone
|
370 |
|
371 |
+
For English responses:
|
372 |
- Use standard English numerals
|
373 |
- 12-hour time format with AM/PM
|
374 |
- Friendly, conversational English tone
|
|
|
384 |
""",
|
385 |
input_variables=["user_query", "api_response", "detected_language", "sentiment_analysis"]
|
386 |
)
|
387 |
+
|
388 |
+
# Create the 3 chains
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
389 |
self.router_chain = LLMChain(llm=self.llm, prompt=self.router_prompt_template)
|
390 |
self.conversation_chain = LLMChain(llm=self.llm, prompt=self.conversation_template)
|
391 |
+
self.api_response_chain = LLMChain(llm=self.llm, prompt=self.api_response_template)
|
392 |
|
393 |
def detect_language(self, text):
|
394 |
"""Detect language of the input text"""
|
|
|
397 |
result = self.language_classifier(text)
|
398 |
detected_lang = result[0][0]['label']
|
399 |
confidence = result[0][0]['score']
|
400 |
+
|
401 |
if detected_lang in ['ar', 'arabic']:
|
402 |
return "arabic"
|
403 |
elif detected_lang in ['en', 'english']:
|
|
|
406 |
return "english" # Default to English for unsupported languages
|
407 |
except:
|
408 |
pass
|
409 |
+
|
410 |
# Fallback: Basic Arabic detection
|
411 |
arabic_pattern = re.compile(r'[\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF]+')
|
412 |
if arabic_pattern.search(text):
|
413 |
return "arabic"
|
414 |
+
|
415 |
return "english"
|
416 |
|
417 |
def analyze_sentiment(self, text):
|
|
|
425 |
}
|
426 |
except:
|
427 |
pass
|
428 |
+
|
429 |
return {"sentiment": "NEUTRAL", "score": 0.5}
|
430 |
|
431 |
def extract_keywords(self, text):
|
|
|
441 |
"""Get recent conversation history as context"""
|
442 |
if not self.conversation_history:
|
443 |
return "No previous conversation"
|
444 |
+
|
445 |
context = []
|
446 |
for item in self.conversation_history[-3:]: # Last 3 exchanges
|
447 |
context.append(f"User: {item['user_message']}")
|
448 |
context.append(f"Bot: {item['bot_response'][:100]}...") # Truncate long responses
|
449 |
+
|
450 |
return " | ".join(context)
|
451 |
|
452 |
def add_to_history(self, user_message, bot_response, response_type):
|
|
|
457 |
'bot_response': bot_response,
|
458 |
'response_type': response_type
|
459 |
})
|
460 |
+
|
461 |
# Keep only recent history
|
462 |
if len(self.conversation_history) > self.max_history_length:
|
463 |
self.conversation_history = self.conversation_history[-self.max_history_length:]
|
464 |
|
465 |
+
def parse_relative_date(self, text, detected_language):
|
466 |
+
"""Parse relative dates from text using a combination of methods"""
|
467 |
+
today = datetime.now()
|
468 |
+
|
469 |
+
# Handle common relative date patterns in English and Arabic
|
470 |
+
tomorrow_patterns = {
|
471 |
+
'english': [r'\btomorrow\b', r'\bnext day\b'],
|
472 |
+
'arabic': [r'\bغدا\b', r'\bبكرة\b', r'\bغدًا\b', r'\bالغد\b']
|
473 |
+
}
|
474 |
+
|
475 |
+
next_week_patterns = {
|
476 |
+
'english': [r'\bnext week\b'],
|
477 |
+
'arabic': [r'\bالأسبوع القادم\b', r'\bالأسبوع المقبل\b', r'\bالاسبوع الجاي\b']
|
478 |
+
}
|
479 |
+
|
480 |
+
# Check for "tomorrow" patterns
|
481 |
+
for pattern in tomorrow_patterns.get(detected_language, []) + tomorrow_patterns.get('english', []):
|
482 |
+
if re.search(pattern, text, re.IGNORECASE):
|
483 |
+
return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
|
484 |
+
|
485 |
+
# Check for "next week" patterns
|
486 |
+
for pattern in next_week_patterns.get(detected_language, []) + next_week_patterns.get('english', []):
|
487 |
+
if re.search(pattern, text, re.IGNORECASE):
|
488 |
+
return (today + timedelta(days=7)).strftime('%Y-%m-%dT%H:%M:%S')
|
489 |
+
|
490 |
+
# If NER model is available, use it to extract date entities
|
491 |
+
if self.date_parser and detected_language == 'english':
|
492 |
+
try:
|
493 |
+
date_entities = self.date_parser(text)
|
494 |
+
for entity in date_entities:
|
495 |
+
if entity['entity_group'] == 'DATE':
|
496 |
+
print(f"Found date entity: {entity['word']}")
|
497 |
+
# Default to tomorrow if we detect any date
|
498 |
+
return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
|
499 |
+
except Exception as e:
|
500 |
+
print(f"Error in date parsing: {e}")
|
501 |
+
|
502 |
+
# Default return None if no date pattern is recognized
|
503 |
+
return None
|
504 |
|
505 |
+
def parse_router_response(self, router_text):
|
506 |
+
"""Parse the router chain response into structured data"""
|
507 |
+
try:
|
508 |
+
# Clean the response text
|
509 |
+
cleaned_response = router_text
|
510 |
+
|
511 |
+
# Remove any comments (both single-line and multi-line)
|
512 |
+
cleaned_response = re.sub(r'//.*?$', '', cleaned_response, flags=re.MULTILINE)
|
513 |
cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
|
514 |
+
|
515 |
+
# Remove any trailing commas
|
516 |
cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
|
517 |
+
|
518 |
+
# Try different methods to parse the JSON response
|
519 |
try:
|
520 |
+
# First attempt: direct JSON parsing of cleaned response
|
521 |
+
parsed_response = json.loads(cleaned_response)
|
522 |
except json.JSONDecodeError:
|
523 |
+
try:
|
524 |
+
# Second attempt: extract JSON from markdown code block
|
525 |
+
json_match = re.search(r'```(?:json)?\s*(\{.*?\})\s*```', cleaned_response, re.DOTALL)
|
526 |
+
if json_match:
|
527 |
+
parsed_response = json.loads(json_match.group(1))
|
528 |
+
else:
|
529 |
+
raise ValueError("No JSON found in code block")
|
530 |
+
except (json.JSONDecodeError, ValueError):
|
531 |
+
try:
|
532 |
+
# Third attempt: find JSON-like content using regex
|
533 |
+
json_pattern = r'\{\s*"intent"\s*:.*?\}'
|
534 |
+
json_match = re.search(json_pattern, cleaned_response, re.DOTALL)
|
535 |
+
if json_match:
|
536 |
+
json_str = json_match.group(0)
|
537 |
+
# Additional cleaning for the extracted JSON
|
538 |
+
json_str = re.sub(r'//.*?$', '', json_str, flags=re.MULTILINE)
|
539 |
+
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
|
540 |
+
parsed_response = json.loads(json_str)
|
541 |
+
else:
|
542 |
+
raise ValueError("Could not extract JSON using regex")
|
543 |
+
except (json.JSONDecodeError, ValueError):
|
544 |
+
print(f"Failed to parse JSON. Raw response: {router_text}")
|
545 |
+
print(f"Cleaned response: {cleaned_response}")
|
546 |
+
# Return default conversation response on parse failure
|
547 |
+
return {
|
548 |
+
"intent": "CONVERSATION",
|
549 |
+
"confidence": 0.5,
|
550 |
+
"reasoning": "Failed to parse router response - defaulting to conversation",
|
551 |
+
"endpoint": None,
|
552 |
+
"method": None,
|
553 |
+
"params": {},
|
554 |
+
"missing_required": []
|
555 |
+
}
|
556 |
+
|
557 |
+
# Validate required fields and set defaults
|
558 |
+
validated_response = {
|
559 |
+
"intent": parsed_response.get("intent", "CONVERSATION"),
|
560 |
+
"confidence": parsed_response.get("confidence", 0.5),
|
561 |
+
"reasoning": parsed_response.get("reasoning", "Router decision"),
|
562 |
+
"endpoint": parsed_response.get("endpoint"),
|
563 |
+
"method": parsed_response.get("method"),
|
564 |
+
"params": parsed_response.get("params", {}),
|
565 |
+
"missing_required": parsed_response.get("missing_required", [])
|
566 |
+
}
|
567 |
+
|
568 |
+
return validated_response
|
569 |
+
|
570 |
except Exception as e:
|
571 |
+
print(f"Error parsing router response: {e}")
|
572 |
return {
|
573 |
"intent": "CONVERSATION",
|
574 |
"confidence": 0.5,
|
575 |
+
"reasoning": f"Parse error: {str(e)}",
|
576 |
+
"endpoint": None,
|
577 |
+
"method": None,
|
578 |
+
"params": {},
|
579 |
+
"missing_required": []
|
580 |
}
|
581 |
|
582 |
def handle_conversation(self, user_query, detected_language, sentiment_result):
|
|
|
588 |
"sentiment_analysis": json.dumps(sentiment_result),
|
589 |
"conversation_history": self.get_conversation_context()
|
590 |
})
|
591 |
+
|
592 |
return result["text"].strip()
|
593 |
+
|
594 |
except Exception as e:
|
595 |
# Fallback response
|
596 |
if detected_language == "arabic":
|
|
|
604 |
endpoint_method = data.get('method')
|
605 |
endpoint_params = data.get('params', {}).copy()
|
606 |
|
|
|
607 |
print(f"🔗 Making API call to {endpoint_method} {self.BASE_URL + endpoint_url} with params: {endpoint_params}")
|
608 |
+
|
609 |
# Inject patient_id if needed
|
610 |
if 'patient_id' in endpoint_params:
|
611 |
endpoint_params['patient_id'] = self.user_id
|
612 |
+
|
613 |
retries = 0
|
614 |
response = None
|
615 |
while retries < self.max_retries:
|
|
|
629 |
headers=self.headers,
|
630 |
timeout=10
|
631 |
)
|
632 |
+
|
633 |
response.raise_for_status()
|
634 |
+
print('Backend Response:', response.json())
|
635 |
return response.json()
|
636 |
+
|
637 |
except requests.exceptions.RequestException as e:
|
638 |
retries += 1
|
639 |
if retries >= self.max_retries:
|
|
|
642 |
"details": str(e),
|
643 |
"status_code": getattr(e.response, 'status_code', None) if hasattr(e, 'response') else None
|
644 |
}
|
645 |
+
|
646 |
time.sleep(self.retry_delay)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
647 |
|
648 |
+
def handle_api_action(self, user_query, detected_language, sentiment_result, keywords, router_data):
|
649 |
+
"""Handle API-based actions using router data"""
|
650 |
try:
|
651 |
+
# Parse relative dates and inject into parameters
|
652 |
+
parsed_date = self.parse_relative_date(user_query, detected_language)
|
653 |
+
if parsed_date:
|
654 |
+
print(f"Parsed relative date: {parsed_date}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
655 |
# Inject parsed date if available and a date parameter exists
|
656 |
+
date_params = ['appointment_date', 'date', 'schedule_date', 'date_time', 'new_date_time']
|
657 |
+
for param in date_params:
|
658 |
+
if param in router_data['params']:
|
659 |
+
router_data['params'][param] = parsed_date
|
660 |
+
|
661 |
+
# Inject patient_id if needed
|
662 |
+
if 'patient_id' in router_data['params']:
|
663 |
+
router_data['params']['patient_id'] = self.user_id
|
664 |
+
|
665 |
+
print(f"🔍 Final API call data: {router_data}")
|
666 |
|
667 |
# Make backend API call
|
668 |
+
api_response = self.backend_call(router_data)
|
669 |
+
|
670 |
print("🔗 API response received:", api_response)
|
671 |
+
|
672 |
# Generate user-friendly response
|
673 |
user_response_result = self.api_response_chain.invoke({
|
674 |
"user_query": user_query,
|
|
|
677 |
"sentiment_analysis": json.dumps(sentiment_result),
|
678 |
})
|
679 |
|
680 |
+
print("🔗 Final user response:", user_response_result["text"].strip())
|
681 |
+
|
682 |
return {
|
683 |
"response": user_response_result["text"].strip(),
|
684 |
"api_data": api_response,
|
685 |
+
"routing_info": router_data
|
686 |
}
|
687 |
+
|
688 |
except Exception as e:
|
689 |
# Fallback error response
|
690 |
if detected_language == "arabic":
|
691 |
error_msg = "أعتذر، لم أتمكن من معالجة طلبك. يرجى المحاولة مرة أخرى أو صياغة السؤال بطريقة مختلفة."
|
692 |
else:
|
693 |
error_msg = "I apologize, I couldn't process your request. Please try again or rephrase your question."
|
694 |
+
|
695 |
return {
|
696 |
"response": error_msg,
|
697 |
"api_data": {"error": str(e)},
|
|
|
699 |
}
|
700 |
|
701 |
def chat(self, user_message: str) -> ChatResponse:
|
702 |
+
"""Main chat method that handles user messages - REVAMPED to use 3 chains"""
|
703 |
start_time = time.time()
|
704 |
+
|
705 |
# Check for exit commands
|
706 |
+
if user_message.lower().strip() in ['quit', 'exit', 'خروج', 'bye', 'goodbye']:
|
707 |
+
if self.detect_language(user_message) == "arabic":
|
708 |
+
return ChatResponse(
|
709 |
+
response_id=str(time.time()),
|
710 |
+
response_type="conversation",
|
711 |
+
message="مع السلامة! أتمنى لك يوماً سعيداً. 👋",
|
712 |
+
language="arabic"
|
713 |
+
)
|
714 |
+
else:
|
715 |
+
return ChatResponse(
|
716 |
+
response_id=str(time.time()),
|
717 |
+
response_type="conversation",
|
718 |
+
message="Goodbye! Have a great day! 👋",
|
719 |
+
language="english"
|
720 |
+
)
|
721 |
+
|
722 |
try:
|
723 |
+
print(f"\n{'='*50}")
|
724 |
+
print(f"🔍 Processing: '{user_message}'")
|
725 |
+
print(f"{'='*50}")
|
726 |
+
|
727 |
+
# Step 1: Language and sentiment analysis
|
728 |
detected_language = self.detect_language(user_message)
|
729 |
sentiment_result = self.analyze_sentiment(user_message)
|
730 |
keywords = self.extract_keywords(user_message)
|
731 |
+
|
732 |
+
print(f"🌐 Detected Language: {detected_language}")
|
733 |
+
print(f"😊 Sentiment: {sentiment_result}")
|
734 |
+
print(f"🔑 Keywords: {keywords}")
|
735 |
+
|
736 |
+
# Step 2: Router Chain - Determine intent and route appropriately
|
737 |
+
print(f"\n🤖 Running Router Chain...")
|
738 |
+
router_result = self.router_chain.invoke({
|
739 |
+
"user_query": user_message,
|
740 |
+
"detected_language": detected_language,
|
741 |
+
"extracted_keywords": json.dumps(keywords),
|
742 |
+
"sentiment_analysis": json.dumps(sentiment_result),
|
743 |
+
"conversation_history": self.get_conversation_context(),
|
744 |
+
"endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2)
|
745 |
+
})
|
746 |
+
|
747 |
+
# Parse router response
|
748 |
+
router_data = self.parse_router_response(router_result["text"])
|
749 |
+
print(f"🎯 Router Decision: {router_data}")
|
750 |
+
|
751 |
+
# Step 3: Handle based on intent
|
752 |
+
if router_data["intent"] == "CONVERSATION":
|
753 |
+
print(f"\n💬 Handling as CONVERSATION")
|
754 |
+
response_text = self.handle_conversation(user_message, detected_language, sentiment_result)
|
755 |
+
|
756 |
+
# Add to conversation history
|
757 |
+
self.add_to_history(user_message, response_text, "conversation")
|
758 |
+
|
759 |
+
return ChatResponse(
|
760 |
+
response_id=str(time.time()),
|
761 |
+
response_type="conversation",
|
762 |
+
message=response_text,
|
763 |
+
api_call_made=False,
|
764 |
+
language=detected_language,
|
765 |
+
api_data=None
|
766 |
+
)
|
767 |
+
|
768 |
+
elif router_data["intent"] == "API_ACTION":
|
769 |
+
print(f"\n🔗 Handling as API_ACTION")
|
770 |
+
|
771 |
+
# Check for missing required parameters
|
772 |
+
# if router_data.get("missing_required"):
|
773 |
+
# missing_params = router_data["missing_required"]
|
774 |
+
# if detected_language == "arabic":
|
775 |
+
# response_text = f"أحتاج إلى مزيد من المعلومات: {', '.join(missing_params)}"
|
776 |
+
# else:
|
777 |
+
# response_text = f"I need more information: {', '.join(missing_params)}"
|
778 |
+
|
779 |
+
# return ChatResponse(
|
780 |
+
# response_id=str(time.time()),
|
781 |
+
# response_type="conversation",
|
782 |
+
# message=response_text,
|
783 |
+
# api_call_made=False,
|
784 |
+
# language=detected_language
|
785 |
+
# )
|
786 |
+
|
787 |
+
# Handle API action
|
788 |
+
api_result = self.handle_api_action(
|
789 |
+
user_message, detected_language, sentiment_result, keywords, router_data
|
790 |
+
)
|
791 |
+
|
792 |
+
# Add to conversation history
|
793 |
+
self.add_to_history(user_message, api_result["response"], "api_action")
|
794 |
+
|
795 |
+
return ChatResponse(
|
796 |
+
response_id=str(time.time()),
|
797 |
response_type="api_action",
|
798 |
+
message=api_result["response"],
|
799 |
api_call_made=True,
|
800 |
+
api_data=api_result["api_data"],
|
801 |
language=detected_language
|
802 |
)
|
803 |
+
|
804 |
else:
|
805 |
+
# Fallback for unknown intent
|
806 |
+
print(f"⚠️ Unknown intent: {router_data['intent']}")
|
807 |
+
fallback_response = self.handle_conversation(user_message, detected_language, sentiment_result)
|
808 |
+
|
809 |
+
return ChatResponse(
|
810 |
+
response_id=str(time.time()),
|
811 |
response_type="conversation",
|
812 |
+
message=fallback_response,
|
813 |
api_call_made=False,
|
814 |
language=detected_language
|
815 |
)
|
816 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
817 |
except Exception as e:
|
818 |
+
print(f"❌ Error in chat method: {str(e)}")
|
819 |
+
print(f"❌ Traceback: {traceback.format_exc()}")
|
820 |
+
|
821 |
+
# Fallback error response
|
822 |
+
if self.detect_language(user_message) == "arabic":
|
823 |
+
error_message = "أعتذر، حدث خطأ في معالجة رسالتك. يرجى المحاولة مرة أخرى."
|
824 |
+
else:
|
825 |
+
error_message = "I apologize, there was an error processing your message. Please try again."
|
826 |
+
|
827 |
return ChatResponse(
|
828 |
+
response_id=str(time.time()),
|
829 |
response_type="conversation",
|
830 |
+
message=error_message,
|
831 |
api_call_made=False,
|
832 |
+
language=self.detect_language(user_message)
|
833 |
)
|
834 |
+
|
835 |
+
finally:
|
836 |
+
end_time = time.time()
|
837 |
+
print(f"⏱️ Processing time: {end_time - start_time:.2f} seconds")
|
838 |
|
839 |
+
def run_interactive_chat(self):
|
840 |
+
"""Run the interactive chat interface"""
|
841 |
+
try:
|
842 |
+
while True:
|
843 |
+
try:
|
844 |
+
# Get user input
|
845 |
+
user_input = input("\n👤 You: ").strip()
|
846 |
+
|
847 |
+
if not user_input:
|
848 |
+
continue
|
849 |
+
|
850 |
+
# Process the message
|
851 |
+
response = self.chat(user_input)
|
852 |
+
|
853 |
+
# Display the response
|
854 |
+
print(f"\n🤖 Bot: {response.message}")
|
855 |
+
|
856 |
+
# Check for exit
|
857 |
+
if user_input.lower() in ['quit', 'exit', 'خروج', 'bye', 'goodbye']:
|
858 |
+
break
|
859 |
+
|
860 |
+
except KeyboardInterrupt:
|
861 |
+
print("\n\n👋 Chat interrupted. Goodbye!")
|
862 |
+
break
|
863 |
+
except EOFError:
|
864 |
+
print("\n\n👋 Chat ended. Goodbye!")
|
865 |
+
break
|
866 |
+
except Exception as e:
|
867 |
+
print(f"\n❌ Error: {e}")
|
868 |
continue
|
869 |
+
|
870 |
+
except Exception as e:
|
871 |
+
print(f"❌ Fatal error in chat interface: {e}")
|
872 |
|
873 |
+
def clear_history(self):
|
874 |
+
"""Clear conversation history"""
|
875 |
+
self.conversation_history = []
|
876 |
+
print("🗑️ Conversation history cleared.")
|
|
|
|
|
877 |
|
|
|
|
|
|
|
|
|
|
|
|
|
878 |
|
|
|
|
|
|
|
879 |
|
880 |
+
# def main():
|
881 |
+
# """Main function to run the healthcare chatbot"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
882 |
# try:
|
883 |
+
# print("🚀 Starting Healthcare Chatbot...")
|
884 |
# chatbot = HealthcareChatbot()
|
885 |
+
# chatbot.run_interactive_chat()
|
886 |
+
|
887 |
+
# except KeyboardInterrupt:
|
888 |
+
# print("\n\n👋 Shutting down gracefully...")
|
889 |
# except Exception as e:
|
890 |
+
# print(f"❌ Fatal error: {e}")
|
891 |
+
# print(f"❌ Traceback: {traceback.format_exc()}")
|
892 |
|
893 |
|
|
|
894 |
# if __name__ == "__main__":
|
895 |
+
# main()
|
896 |
+
|
897 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
898 |
from fastapi import FastAPI, HTTPException
|
899 |
from pydantic import BaseModel
|
900 |
from typing import Dict, Any, Optional
|
|
|
912 |
class QueryRequest(BaseModel):
|
913 |
query: str
|
914 |
|
|
|
|
|
|
|
|
|
|
|
|
|
915 |
|
916 |
@app.post("/query")
|
917 |
async def process_query(request: QueryRequest):
|
|
|
919 |
Process a user query and return a response
|
920 |
"""
|
921 |
try:
|
922 |
+
response = agent.chat(request.query).message
|
923 |
return response
|
924 |
except Exception as e:
|
925 |
raise HTTPException(status_code=500, detail=str(e))
|
old.py
ADDED
@@ -0,0 +1,1146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import json
|
3 |
+
import requests
|
4 |
+
import traceback
|
5 |
+
import time
|
6 |
+
import os
|
7 |
+
from typing import Dict, Any, List, Optional, Tuple
|
8 |
+
from datetime import datetime, timedelta
|
9 |
+
|
10 |
+
# Updated imports for pydantic
|
11 |
+
from pydantic import BaseModel, Field
|
12 |
+
|
13 |
+
# Updated imports for LangChain
|
14 |
+
from langchain_core.prompts import PromptTemplate, ChatPromptTemplate
|
15 |
+
from langchain_core.output_parsers import JsonOutputParser
|
16 |
+
from langchain_ollama import OllamaLLM
|
17 |
+
from langchain.chains import LLMChain
|
18 |
+
from langchain.callbacks.manager import CallbackManager
|
19 |
+
from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
20 |
+
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
|
21 |
+
|
22 |
+
# Enhanced HuggingFace imports for improved functionality
|
23 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
24 |
+
import numpy as np
|
25 |
+
|
26 |
+
# Import endpoints documentation
|
27 |
+
from endpoints_documentation import endpoints_documentation
|
28 |
+
|
29 |
+
# Set environment variables for HuggingFace
|
30 |
+
# if os.name == 'posix' and os.uname().sysname == 'Darwin': # Check if running on macOS
|
31 |
+
# os.environ["HF_HOME"] = os.path.expanduser("~/Library/Caches/huggingface")
|
32 |
+
# os.environ["TRANSFORMERS_CACHE"] = os.path.expanduser("~/Library/Caches/huggingface/transformers")
|
33 |
+
# else:
|
34 |
+
os.environ["HF_HOME"] = "/tmp/huggingface"
|
35 |
+
os.environ["HF_HUB_DISABLE_SYMLINKS_WARNING"] = "1"
|
36 |
+
|
37 |
+
|
38 |
+
class ChatMessage(BaseModel):
|
39 |
+
"""Data model for chat messages"""
|
40 |
+
message_id: str = Field(..., description="Unique identifier for the message")
|
41 |
+
user_id: str = Field(..., description="User identifier")
|
42 |
+
message: str = Field(..., description="The user's message")
|
43 |
+
timestamp: datetime = Field(default_factory=datetime.now, description="When the message was sent")
|
44 |
+
language: str = Field(default="english", description="Detected language of the message")
|
45 |
+
|
46 |
+
|
47 |
+
class ChatResponse(BaseModel):
|
48 |
+
"""Data model for chatbot responses"""
|
49 |
+
response_id: str = Field(..., description="Unique identifier for the response")
|
50 |
+
response_type: str = Field(..., description="Type of response: 'conversation' or 'api_action'")
|
51 |
+
message: str = Field(..., description="The chatbot's response message")
|
52 |
+
api_call_made: bool = Field(default=False, description="Whether an API call was made")
|
53 |
+
api_data: Optional[Dict[str, Any]] = Field(default=None, description="API response data if applicable")
|
54 |
+
language: str = Field(default="english", description="Language of the response")
|
55 |
+
timestamp: datetime = Field(default_factory=datetime.now, description="When the response was generated")
|
56 |
+
|
57 |
+
|
58 |
+
class EndpointRequest(BaseModel):
|
59 |
+
"""Data model for API endpoint requests"""
|
60 |
+
endpoint: str = Field(..., description="The API endpoint path to call")
|
61 |
+
method: str = Field(..., description="The HTTP method to use (GET or POST)")
|
62 |
+
params: Dict[str, Any] = Field(default_factory=dict, description="Parameters for the API call")
|
63 |
+
missing_required: List[str] = Field(default_factory=list, description="Any required parameters that are missing")
|
64 |
+
|
65 |
+
|
66 |
+
class HealthcareChatbot:
|
67 |
+
def __init__(self):
|
68 |
+
self.endpoints_documentation = endpoints_documentation
|
69 |
+
self.ollama_base_url = "http://localhost:11434"
|
70 |
+
self.model_name = "gemma3"
|
71 |
+
self.BASE_URL = 'https://f376-197-54-54-66.ngrok-free.app'
|
72 |
+
self.headers = {'Content-type': 'application/json'}
|
73 |
+
self.user_id = '86639f4c-5dfc-441d-b229-084f0fcdd748'
|
74 |
+
self.max_retries = 3
|
75 |
+
self.retry_delay = 2
|
76 |
+
|
77 |
+
# Store conversation history
|
78 |
+
self.conversation_history = []
|
79 |
+
self.max_history_length = 10 # Keep last 10 exchanges
|
80 |
+
|
81 |
+
# Initialize components
|
82 |
+
self._initialize_language_tools()
|
83 |
+
self._initialize_llm()
|
84 |
+
self._initialize_parsers_and_chains()
|
85 |
+
self._initialize_date_parser()
|
86 |
+
|
87 |
+
print("Healthcare Chatbot initialized successfully!")
|
88 |
+
self._print_welcome_message()
|
89 |
+
|
90 |
+
def _print_welcome_message(self):
|
91 |
+
"""Print welcome message in both languages"""
|
92 |
+
print("\n" + "="*60)
|
93 |
+
print("🏥 HEALTHCARE CHATBOT READY")
|
94 |
+
print("="*60)
|
95 |
+
print("English: Hello! I'm your healthcare assistant. I can help you with:")
|
96 |
+
print("• Booking and managing appointments")
|
97 |
+
print("• Finding hospital information")
|
98 |
+
print("• Viewing your medical records")
|
99 |
+
print("• General healthcare questions")
|
100 |
+
print()
|
101 |
+
print("Arabic: مرحباً! أنا مساعدك الطبي. يمكنني مساعدتك في:")
|
102 |
+
print("• حجز وإدارة المواعيد")
|
103 |
+
print("• العثور على معلومات المستشفى")
|
104 |
+
print("• عرض سجلاتك الطبية")
|
105 |
+
print("• الأسئلة الطبية العامة")
|
106 |
+
print("="*60)
|
107 |
+
print("Type 'quit' or 'خروج' to exit\n")
|
108 |
+
|
109 |
+
def _initialize_language_tools(self):
|
110 |
+
"""Initialize language processing tools"""
|
111 |
+
try:
|
112 |
+
self.embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large")
|
113 |
+
self.language_classifier = pipeline(
|
114 |
+
"text-classification",
|
115 |
+
model="papluca/xlm-roberta-base-language-detection",
|
116 |
+
top_k=1
|
117 |
+
)
|
118 |
+
self.sentiment_analyzer = pipeline(
|
119 |
+
"sentiment-analysis",
|
120 |
+
model="cardiffnlp/twitter-xlm-roberta-base-sentiment"
|
121 |
+
)
|
122 |
+
print("✓ Language processing models loaded successfully")
|
123 |
+
except Exception as e:
|
124 |
+
print(f"⚠ Warning: Some language models failed to load: {e}")
|
125 |
+
self.language_classifier = None
|
126 |
+
self.sentiment_analyzer = None
|
127 |
+
|
128 |
+
def _initialize_date_parser(self):
|
129 |
+
"""Initialize date parsing model"""
|
130 |
+
try:
|
131 |
+
self.date_parser = pipeline(
|
132 |
+
"token-classification",
|
133 |
+
model="Jean-Baptiste/roberta-large-ner-english",
|
134 |
+
aggregation_strategy="simple"
|
135 |
+
)
|
136 |
+
except Exception as e:
|
137 |
+
print(f"⚠ Warning: Date parsing model failed to load: {e}")
|
138 |
+
self.date_parser = None
|
139 |
+
|
140 |
+
def _initialize_llm(self):
|
141 |
+
"""Initialize the LLM"""
|
142 |
+
callbacks = [StreamingStdOutCallbackHandler()]
|
143 |
+
self.llm = OllamaLLM(
|
144 |
+
model=self.model_name,
|
145 |
+
base_url=self.ollama_base_url,
|
146 |
+
callbacks=callbacks,
|
147 |
+
temperature=0.7,
|
148 |
+
num_ctx=8192,
|
149 |
+
top_p=0.9,
|
150 |
+
request_timeout=60,
|
151 |
+
)
|
152 |
+
|
153 |
+
def _initialize_parsers_and_chains(self):
|
154 |
+
"""Initialize all prompt templates and chains"""
|
155 |
+
self.json_parser = JsonOutputParser(pydantic_object=EndpointRequest)
|
156 |
+
|
157 |
+
# Intent classification prompt
|
158 |
+
# self.intent_classifier_template = PromptTemplate(
|
159 |
+
# template="""
|
160 |
+
# You are an intent classifier. Your job is simple: understand what the user wants and check if any API endpoint can do that.
|
161 |
+
|
162 |
+
# User Message: {user_query}
|
163 |
+
# Language: {detected_language}
|
164 |
+
# API Endpoints: {endpoints_documentation}
|
165 |
+
|
166 |
+
# Think step by step:
|
167 |
+
|
168 |
+
# 1. What does the user want from this message?
|
169 |
+
# Read the user's message carefully. What is the user trying to say or accomplish? What would a human understand from this message?
|
170 |
+
|
171 |
+
# 2. Can any API endpoint fulfill what the user wants?
|
172 |
+
# Look at each API endpoint. Does any endpoint do what the user is asking for? Be very precise - only say yes if there's a clear match.
|
173 |
+
|
174 |
+
# Important rules:
|
175 |
+
# - Focus ONLY on the current message, ignore conversation history for classification
|
176 |
+
# - If the user is just talking, being social, or saying something casual, that's CONVERSATION
|
177 |
+
# - Only choose API_ACTION if the user is clearly asking for something an API endpoint can do
|
178 |
+
# - When you're not sure, choose CONVERSATION
|
179 |
+
|
180 |
+
# Answer in this format:
|
181 |
+
# {{
|
182 |
+
# "intent": "API_ACTION" or "CONVERSATION",
|
183 |
+
# "confidence": [0.0 to 1.0],
|
184 |
+
# "reasoning": "What does the user want? Can any API do this?",
|
185 |
+
# "requires_backend": true or false
|
186 |
+
# }}
|
187 |
+
# """,
|
188 |
+
# input_variables=["user_query", "detected_language", "conversation_history", "endpoints_documentation"]
|
189 |
+
# )
|
190 |
+
|
191 |
+
self.intent_classifier_template = PromptTemplate(
|
192 |
+
template="""
|
193 |
+
You are a strict intent classification system. Your only task is to determine if the user message requires an API action or is general conversation.
|
194 |
+
|
195 |
+
=== ABSOLUTE RULES ===
|
196 |
+
1. OUTPUT FORMAT MUST BE EXACTLY:
|
197 |
+
{{
|
198 |
+
"intent": "API_ACTION" or "CONVERSATION",
|
199 |
+
"confidence": 0.0-1.0,
|
200 |
+
"reasoning": "clear justification",
|
201 |
+
"requires_backend": true or false
|
202 |
+
}}
|
203 |
+
2. Never invent custom intent types
|
204 |
+
3. Never output endpoint names in the intent field
|
205 |
+
4. "requires_backend" must match the intent (true for API_ACTION)
|
206 |
+
|
207 |
+
=== CLASSIFICATION CRITERIA ===
|
208 |
+
API_ACTION must meet ALL of:
|
209 |
+
- The message contains a clear, actionable request
|
210 |
+
- The request matches a documented API endpoint's purpose
|
211 |
+
- The request requires specific backend functionality
|
212 |
+
|
213 |
+
CONVERSATION applies when:
|
214 |
+
- The message is social/greeting/smalltalk
|
215 |
+
- The request is too vague for API action
|
216 |
+
- No API endpoint matches the request
|
217 |
+
|
218 |
+
=== INPUT DATA ===
|
219 |
+
User Message: {user_query}
|
220 |
+
Detected Language: {detected_language}
|
221 |
+
API Endpoints: {endpoints_documentation}
|
222 |
+
|
223 |
+
=== DECISION PROCESS ===
|
224 |
+
1. Analyze the message literally - what is the explicit request?
|
225 |
+
2. Check endpoints documentation - is there an exact functional match?
|
226 |
+
3. If uncertain, default to CONVERSATION
|
227 |
+
4. Validate against rules before responding
|
228 |
+
|
229 |
+
=== OUTPUT VALIDATION ===
|
230 |
+
Before responding, verify:
|
231 |
+
- Intent is ONLY "API_ACTION" or "CONVERSATION"
|
232 |
+
- Confidence reflects certainty (1.0 = perfect match)
|
233 |
+
- Reasoning explains the endpoint match (for API_ACTION)
|
234 |
+
- requires_backend aligns with intent
|
235 |
+
|
236 |
+
Respond ONLY in the exact specified format.
|
237 |
+
""",
|
238 |
+
input_variables=["user_query", "detected_language", "conversation_history", "endpoints_documentation"]
|
239 |
+
)
|
240 |
+
|
241 |
+
|
242 |
+
|
243 |
+
# API routing prompt (reuse existing router_prompt_template)
|
244 |
+
self.router_prompt_template = PromptTemplate(
|
245 |
+
template="""
|
246 |
+
You are a precise API routing assistant. Your job is to analyze user queries and select the correct API endpoint with proper parameters.
|
247 |
+
|
248 |
+
=== ENDPOINT DOCUMENTATION ===
|
249 |
+
{endpoints_documentation}
|
250 |
+
|
251 |
+
=== USER REQUEST ANALYSIS ===
|
252 |
+
User Query: {user_query}
|
253 |
+
Language: {detected_language}
|
254 |
+
Keywords: {extracted_keywords}
|
255 |
+
Sentiment: {sentiment_analysis}
|
256 |
+
Current Context:
|
257 |
+
- DateTime: {current_datetime}
|
258 |
+
- Timezone: {timezone}
|
259 |
+
- User Locale: {user_locale}
|
260 |
+
|
261 |
+
=== ROUTING PROCESS ===
|
262 |
+
Follow these steps in order:
|
263 |
+
|
264 |
+
STEP 1: INTENT ANALYSIS
|
265 |
+
- What is the user trying to accomplish?
|
266 |
+
- What type of operation are they requesting? (create, read, update, delete, search, etc.)
|
267 |
+
- What entity/resource are they working with?
|
268 |
+
|
269 |
+
STEP 2: DATE/TIME PROCESSING
|
270 |
+
- Identify any temporal expressions in the user query
|
271 |
+
- Convert relative dates/times using the current context:
|
272 |
+
* "اليوم" (today) = current date
|
273 |
+
* "غدا" (tomorrow) = current date + 1 day
|
274 |
+
* "أمس" (yesterday) = current date - 1 day
|
275 |
+
* "الأسبوع القادم" (next week) = current date + 7 days
|
276 |
+
* "بعد ساعتين" (in 2 hours) = current time + 2 hours
|
277 |
+
* "صباحًا" (morning/AM), "مساءً" (evening/PM)
|
278 |
+
- Handle different date formats and languages
|
279 |
+
- Account for timezone differences
|
280 |
+
- Convert to ISO 8601 format: YYYY-MM-DDTHH:MM:SS
|
281 |
+
|
282 |
+
STEP 3: ENDPOINT MATCHING
|
283 |
+
- Review each endpoint in the documentation
|
284 |
+
- Match the user's intent to the endpoint's PURPOSE/DESCRIPTION
|
285 |
+
- Consider the HTTP method (GET for retrieval, POST for creation, etc.)
|
286 |
+
- Verify the endpoint can handle the user's specific request
|
287 |
+
|
288 |
+
STEP 4: PARAMETER EXTRACTION
|
289 |
+
- Identify ALL required parameters from the endpoint documentation
|
290 |
+
- Extract parameter values from the user query
|
291 |
+
- Convert data types as needed:
|
292 |
+
- Dates/times to ISO 8601 format (YYYY-MM-DDTHH:mm:ss)
|
293 |
+
- Numbers to integers
|
294 |
+
- Set appropriate defaults for optional parameters if beneficial
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
STEP 5: VALIDATION
|
299 |
+
- Ensure ALL required parameters are provided or identified as missing
|
300 |
+
- Verify parameter formats match documentation requirements
|
301 |
+
- Check that the selected endpoint actually solves the user's problem
|
302 |
+
|
303 |
+
=== RESPONSE FORMAT ===
|
304 |
+
Provide your analysis and decision in this exact JSON structure:
|
305 |
+
|
306 |
+
{{
|
307 |
+
"reasoning": {{
|
308 |
+
"user_intent": "Brief description of what the user wants to accomplish",
|
309 |
+
"selected_endpoint": "Why this endpoint was chosen over others",
|
310 |
+
"parameter_mapping": "How user query maps to endpoint parameters"
|
311 |
+
}},
|
312 |
+
"endpoint": "/exact_endpoint_path_from_documentation",
|
313 |
+
"method": "HTTP_METHOD",
|
314 |
+
"params": {{
|
315 |
+
"required_param_1": "extracted_or_converted_value",
|
316 |
+
"required_param_2": "extracted_or_converted_value",
|
317 |
+
"optional_param": "value_if_applicable"
|
318 |
+
}},
|
319 |
+
"missing_required": ["list", "of", "missing", "required", "parameters"],
|
320 |
+
"confidence": 0.95
|
321 |
+
}}
|
322 |
+
|
323 |
+
=== CRITICAL RULES ===
|
324 |
+
1. ONLY select endpoints that exist in the provided documentation
|
325 |
+
2. NEVER fabricate or assume endpoint parameters not in documentation
|
326 |
+
3. ALL required parameters MUST be included or listed as missing
|
327 |
+
4. Convert dates/times to ISO 8601 format (YYYY-MM-DDTHH:mm:ss)
|
328 |
+
5. If patient_id is required and not provided, add it to missing_required
|
329 |
+
6. Match endpoints by PURPOSE, not just keywords in the path
|
330 |
+
7. If multiple endpoints could work, choose the most specific one
|
331 |
+
8. If no endpoint matches, set endpoint to null and explain in reasoning
|
332 |
+
|
333 |
+
=== EXAMPLES OF GOOD MATCHING ===
|
334 |
+
- User wants "patient records" → Use patient retrieval endpoint, not general search
|
335 |
+
- User wants to "schedule appointment" → Use appointment creation endpoint
|
336 |
+
- User asks "what appointments today" → Use appointment listing with date filter
|
337 |
+
- User wants to "update medication" → Use medication update endpoint with patient_id
|
338 |
+
|
339 |
+
Think step by step and be precise with your endpoint selection and parameter extraction.:""",
|
340 |
+
input_variables=["endpoints_documentation", "user_query", "detected_language",
|
341 |
+
"extracted_keywords", "sentiment_analysis", "conversation_history",
|
342 |
+
"current_datetime", "timezone", "user_locale"]
|
343 |
+
)
|
344 |
+
# old one
|
345 |
+
# self.router_prompt_template = PromptTemplate(
|
346 |
+
# template="""
|
347 |
+
# You are a precise API routing assistant. Your job is to analyze user queries and select the correct API endpoint with proper parameters.
|
348 |
+
|
349 |
+
# === ENDPOINT DOCUMENTATION ===
|
350 |
+
# {endpoints_documentation}
|
351 |
+
|
352 |
+
# === USER REQUEST ANALYSIS ===
|
353 |
+
# User Query: {user_query}
|
354 |
+
# Language: {detected_language}
|
355 |
+
# Keywords: {extracted_keywords}
|
356 |
+
# Sentiment: {sentiment_analysis}
|
357 |
+
|
358 |
+
# === ROUTING PROCESS ===
|
359 |
+
# Follow these steps in order:
|
360 |
+
|
361 |
+
# STEP 1: INTENT ANALYSIS
|
362 |
+
# - What is the user trying to accomplish?
|
363 |
+
# - What type of operation are they requesting? (create, read, update, delete, search, etc.)
|
364 |
+
# - What entity/resource are they working with?
|
365 |
+
|
366 |
+
# STEP 2: ENDPOINT MATCHING
|
367 |
+
# - Review each endpoint in the documentation
|
368 |
+
# - Match the user's intent to the endpoint's PURPOSE/DESCRIPTION
|
369 |
+
# - Consider the HTTP method (GET for retrieval, POST for creation, etc.)
|
370 |
+
# - Verify the endpoint can handle the user's specific request
|
371 |
+
|
372 |
+
# STEP 3: PARAMETER EXTRACTION
|
373 |
+
# - Identify ALL required parameters from the endpoint documentation
|
374 |
+
# - Extract parameter values from the user query
|
375 |
+
# - Convert data types as needed (dates to ISO 8601, numbers to integers, etc.)
|
376 |
+
# - Set appropriate defaults for optional parameters if beneficial
|
377 |
+
|
378 |
+
# STEP 4: VALIDATION
|
379 |
+
# - Ensure ALL required parameters are provided or identified as missing
|
380 |
+
# - Verify parameter formats match documentation requirements
|
381 |
+
# - Check that the selected endpoint actually solves the user's problem
|
382 |
+
|
383 |
+
# === RESPONSE FORMAT ===
|
384 |
+
# Provide your analysis and decision in this exact JSON structure:
|
385 |
+
|
386 |
+
# {{
|
387 |
+
# "reasoning": {{
|
388 |
+
# "user_intent": "Brief description of what the user wants to accomplish",
|
389 |
+
# "selected_endpoint": "Why this endpoint was chosen over others",
|
390 |
+
# "parameter_mapping": "How user query maps to endpoint parameters"
|
391 |
+
# }},
|
392 |
+
# "endpoint": "/exact_endpoint_path_from_documentation",
|
393 |
+
# "method": "HTTP_METHOD",
|
394 |
+
# "params": {{
|
395 |
+
# "required_param_1": "extracted_or_converted_value",
|
396 |
+
# "required_param_2": "extracted_or_converted_value",
|
397 |
+
# "optional_param": "value_if_applicable"
|
398 |
+
# }},
|
399 |
+
# "missing_required": ["list", "of", "missing", "required", "parameters"],
|
400 |
+
# "confidence": 0.95
|
401 |
+
# }}
|
402 |
+
|
403 |
+
# === CRITICAL RULES ===
|
404 |
+
# 1. ONLY select endpoints that exist in the provided documentation
|
405 |
+
# 2. NEVER fabricate or assume endpoint parameters not in documentation
|
406 |
+
# 3. ALL required parameters MUST be included or listed as missing
|
407 |
+
# 4. Convert dates/times to ISO 8601 format (YYYY-MM-DDTHH:MM:SS)
|
408 |
+
# 5. If patient_id is required and not provided, add it to missing_required
|
409 |
+
# 6. Match endpoints by PURPOSE, not just keywords in the path
|
410 |
+
# 7. If multiple endpoints could work, choose the most specific one
|
411 |
+
# 8. If no endpoint matches, set endpoint to null and explain in reasoning
|
412 |
+
|
413 |
+
# === EXAMPLES OF GOOD MATCHING ===
|
414 |
+
# - User wants "patient records" → Use patient retrieval endpoint, not general search
|
415 |
+
# - User wants to "schedule appointment" → Use appointment creation endpoint
|
416 |
+
# - User asks "what appointments today" → Use appointment listing with date filter
|
417 |
+
# - User wants to "update medication" → Use medication update endpoint with patient_id
|
418 |
+
|
419 |
+
# Think step by step and be precise with your endpoint selection and parameter extraction.:""",
|
420 |
+
# input_variables=["endpoints_documentation", "user_query", "detected_language",
|
421 |
+
# "extracted_keywords", "sentiment_analysis", "conversation_history"]
|
422 |
+
# )
|
423 |
+
|
424 |
+
# Conversational response prompt
|
425 |
+
self.conversation_template = PromptTemplate(
|
426 |
+
template="""
|
427 |
+
You are a friendly and professional healthcare chatbot assistant.
|
428 |
+
|
429 |
+
=== RESPONSE GUIDELINES ===
|
430 |
+
- Respond ONLY in {detected_language}
|
431 |
+
- Be helpful, empathetic, and professional
|
432 |
+
- Keep responses concise but informative
|
433 |
+
- Use appropriate medical terminology when needed
|
434 |
+
- Maintain a caring and supportive tone
|
435 |
+
|
436 |
+
=== CONTEXT ===
|
437 |
+
User Message: {user_query}
|
438 |
+
Language: {detected_language}
|
439 |
+
Sentiment: {sentiment_analysis}
|
440 |
+
Conversation History: {conversation_history}
|
441 |
+
|
442 |
+
=== LANGUAGE-SPECIFIC INSTRUCTIONS ===
|
443 |
+
|
444 |
+
FOR ARABIC RESPONSES:
|
445 |
+
- Use Modern Standard Arabic (الفصحى)
|
446 |
+
- Be respectful and formal as appropriate in Arabic culture
|
447 |
+
- Use proper Arabic medical terminology
|
448 |
+
- Keep sentences clear and grammatically correct
|
449 |
+
|
450 |
+
FOR ENGLISH RESPONSES:
|
451 |
+
- Use clear, professional English
|
452 |
+
- Be warm and approachable
|
453 |
+
- Use appropriate medical terminology
|
454 |
+
|
455 |
+
=== RESPONSE RULES ===
|
456 |
+
1. Address the user's question or comment directly
|
457 |
+
2. Provide helpful information when possible
|
458 |
+
3. If you cannot help with something specific, explain what you CAN help with
|
459 |
+
4. Never provide specific medical advice - always recommend consulting healthcare professionals
|
460 |
+
5. Be encouraging and supportive
|
461 |
+
6. Do NOT mix languages in your response
|
462 |
+
7. End responses naturally without asking multiple questions
|
463 |
+
|
464 |
+
Generate a helpful conversational response:""",
|
465 |
+
input_variables=["user_query", "detected_language", "sentiment_analysis", "conversation_history"]
|
466 |
+
)
|
467 |
+
|
468 |
+
# API response formatting prompt (reuse existing user_response_template)
|
469 |
+
self.user_response_template = PromptTemplate(
|
470 |
+
template="""
|
471 |
+
You are a professional healthcare assistant. Answer the user's question using the provided API data.
|
472 |
+
|
473 |
+
User Query: {user_query}
|
474 |
+
User Sentiment: {sentiment_analysis}
|
475 |
+
Response Language: {detected_language}
|
476 |
+
|
477 |
+
API Response Data:
|
478 |
+
{api_response}
|
479 |
+
|
480 |
+
=== INSTRUCTIONS ===
|
481 |
+
|
482 |
+
1. Read and understand the API response data above
|
483 |
+
2. Use ONLY the actual data from the API response - never make up information
|
484 |
+
3. Respond in {detected_language} language only
|
485 |
+
4. Write like you're talking to a friend or family member - warm, friendly, and caring
|
486 |
+
5. Make it sound natural and conversational, not like a system message
|
487 |
+
6. Convert technical data to simple, everyday language
|
488 |
+
|
489 |
+
=== DATE AND TIME FORMATTING ===
|
490 |
+
|
491 |
+
When you see date_time fields like '2025-05-30T10:28:10':
|
492 |
+
- For English: Convert to "May 30, 2025 at 10:28 AM"
|
493 |
+
- For Arabic: Convert to "٣٠ مايو ٢٠٢٥ في الساعة ١٠:٢٨ صباحاً"
|
494 |
+
|
495 |
+
=== RESPONSE EXAMPLES ===
|
496 |
+
|
497 |
+
For appointment confirmations:
|
498 |
+
- English: "Great! I've got your appointment set up for May 30, 2025 at 10:28 AM. Everything looks good!"
|
499 |
+
- Arabic: "ممتاز! موعدك محجوز يوم ٣٠ مايو ٢٠٢٥ الساعة ١٠:٢٨ صباحاً. كل شيء جاهز!"
|
500 |
+
|
501 |
+
For appointment info:
|
502 |
+
- English: "Your next appointment is on May 30, 2025 at 10:28 AM. See you then!"
|
503 |
+
- Arabic: "موعدك القادم يوم ٣٠ مايو ٢٠٢٥ الساعة ١٠:٢٨ صباحاً. نراك قريباً!"
|
504 |
+
|
505 |
+
=== TONE GUIDELINES ===
|
506 |
+
- Use friendly words like: "Great!", "Perfect!", "All set!", "ممتاز!", "رائع!", "تمام!"
|
507 |
+
- Add reassuring phrases: "Everything looks good", "You're all set", "كل شيء جاهز", "تم بنجاح"
|
508 |
+
- Sound helpful and caring, not robotic or formal
|
509 |
+
|
510 |
+
=== LANGUAGE FORMATTING ===
|
511 |
+
|
512 |
+
For Arabic responses:
|
513 |
+
- Use Arabic numerals: ٠١٢٣٤٥٦٧٨٩
|
514 |
+
- Use Arabic month names: يناير، فبراير، مارس، أبريل، مايو، يونيو، يوليو، أغسطس، سبتمبر، أكتوبر، نوفمبر، ديسمبر
|
515 |
+
- Friendly, warm Arabic tone
|
516 |
+
|
517 |
+
For English responses:
|
518 |
+
- Use standard English numerals
|
519 |
+
- 12-hour time format with AM/PM
|
520 |
+
- Friendly, conversational English tone
|
521 |
+
|
522 |
+
=== CRITICAL RULES ===
|
523 |
+
- Extract dates and times exactly as they appear in the API response
|
524 |
+
- Never use example dates or placeholder information
|
525 |
+
- Respond only in the specified language
|
526 |
+
- Make your response sound like a helpful friend, not a computer
|
527 |
+
- Focus on answering the user's specific question with warmth and care
|
528 |
+
|
529 |
+
Generate a friendly, helpful response using the API data provided above.
|
530 |
+
""",
|
531 |
+
input_variables=["user_query", "api_response", "detected_language", "sentiment_analysis"]
|
532 |
+
)
|
533 |
+
# self.user_response_template = PromptTemplate(
|
534 |
+
# template="""
|
535 |
+
# You are a professional healthcare assistant. Your task is to carefully analyze the API data and respond to the user's question accurately.
|
536 |
+
|
537 |
+
# User Query: {user_query}
|
538 |
+
# User Sentiment: {sentiment_analysis}
|
539 |
+
# Response Language: {detected_language}
|
540 |
+
|
541 |
+
# API Response Data:
|
542 |
+
# {api_response}
|
543 |
+
|
544 |
+
# === CRITICAL INSTRUCTIONS ===
|
545 |
+
|
546 |
+
# 1. FIRST: Carefully read and analyze the API response data above
|
547 |
+
# 2. SECOND: Identify all date_time fields in the format 'YYYY-MM-DDTHH:MM:SS'
|
548 |
+
# 3. THIRD: Extract the EXACT dates and times from the API response - DO NOT use any example dates
|
549 |
+
# 4. FOURTH: Convert these extracted dates to the user-friendly format specified below
|
550 |
+
# 5. FIFTH: Respond ONLY in {detected_language} language
|
551 |
+
# 6. Use a warm, friendly, conversational tone like talking to a friend
|
552 |
+
|
553 |
+
# === DATE EXTRACTION AND CONVERSION ===
|
554 |
+
|
555 |
+
# Step 1: Find date_time fields in the API response (format: 'YYYY-MM-DDTHH:MM:SS')
|
556 |
+
# Step 2: Convert ONLY the actual extracted dates using these rules:
|
557 |
+
|
558 |
+
# For English:
|
559 |
+
# - Convert 'YYYY-MM-DDTHH:MM:SS' to readable format
|
560 |
+
# - Example: '2025-06-01T08:00:00' becomes "June 1, 2025 at 8:00 AM"
|
561 |
+
# - Use 12-hour format with AM/PM
|
562 |
+
|
563 |
+
# For Arabic:
|
564 |
+
# - Convert to Arabic numerals and month names
|
565 |
+
# - Example: '2025-06-01T08:00:00' becomes "١ يونيو ٢٠٢٥ في الساعة ٨:٠٠ صباحاً"
|
566 |
+
# - Arabic months: يناير، فبراير، مارس، أبريل، مايو، يونيو، يوليو، أغسطس، سبتمبر، أكتوبر، نوفمبر، ديسمبر
|
567 |
+
# - Arabic numerals: ٠١٢٣٤٥٦٧٨٩
|
568 |
+
|
569 |
+
# === RESPONSE APPROACH ===
|
570 |
+
|
571 |
+
# 1. Analyze what the user is asking for
|
572 |
+
# 2. Find the relevant information in the API response
|
573 |
+
# 3. Extract actual dates/times from the API data
|
574 |
+
# 4. Convert technical information to simple language
|
575 |
+
# 5. Respond warmly and helpfully
|
576 |
+
|
577 |
+
# === TONE AND LANGUAGE ===
|
578 |
+
|
579 |
+
# English responses:
|
580 |
+
# - Use phrases like: "Great!", "Perfect!", "All set!", "Here's what I found:"
|
581 |
+
# - Be conversational and reassuring
|
582 |
+
|
583 |
+
# Arabic responses:
|
584 |
+
# - Use phrases like: "ممتاز!", "رائع!", "تمام!", "إليك ما وجدته:"
|
585 |
+
# - Be warm and helpful in Arabic style
|
586 |
+
|
587 |
+
# === IMPORTANT REMINDERS ===
|
588 |
+
# - NEVER use example dates from this prompt
|
589 |
+
# - ALWAYS extract dates from the actual API response data
|
590 |
+
# - If no dates exist in API response, don't mention any dates
|
591 |
+
# - Stay focused on answering the user's specific question
|
592 |
+
# - Use only information that exists in the API response
|
593 |
+
|
594 |
+
# Now, carefully analyze the API response above and generate a helpful response to the user's query using ONLY the actual data provided.
|
595 |
+
# """,
|
596 |
+
# input_variables=["user_query", "api_response", "detected_language", "sentiment_analysis"]
|
597 |
+
# )
|
598 |
+
|
599 |
+
# Create chains
|
600 |
+
self.intent_chain = LLMChain(llm=self.llm, prompt=self.intent_classifier_template)
|
601 |
+
self.router_chain = LLMChain(llm=self.llm, prompt=self.router_prompt_template)
|
602 |
+
self.conversation_chain = LLMChain(llm=self.llm, prompt=self.conversation_template)
|
603 |
+
self.api_response_chain = LLMChain(llm=self.llm, prompt=self.user_response_template)
|
604 |
+
|
605 |
+
def detect_language(self, text):
|
606 |
+
"""Detect language of the input text"""
|
607 |
+
if self.language_classifier and len(text.strip()) > 3:
|
608 |
+
try:
|
609 |
+
result = self.language_classifier(text)
|
610 |
+
detected_lang = result[0][0]['label']
|
611 |
+
confidence = result[0][0]['score']
|
612 |
+
|
613 |
+
if detected_lang in ['ar', 'arabic']:
|
614 |
+
return "arabic"
|
615 |
+
elif detected_lang in ['en', 'english']:
|
616 |
+
return "english"
|
617 |
+
elif confidence > 0.8:
|
618 |
+
return "english" # Default to English for unsupported languages
|
619 |
+
except:
|
620 |
+
pass
|
621 |
+
|
622 |
+
# Fallback: Basic Arabic detection
|
623 |
+
arabic_pattern = re.compile(r'[\u0600-\u06FF\u0750-\u077F\u08A0-\u08FF]+')
|
624 |
+
if arabic_pattern.search(text):
|
625 |
+
return "arabic"
|
626 |
+
|
627 |
+
return "english"
|
628 |
+
|
629 |
+
def analyze_sentiment(self, text):
|
630 |
+
"""Analyze sentiment of the text"""
|
631 |
+
if self.sentiment_analyzer and len(text.strip()) > 3:
|
632 |
+
try:
|
633 |
+
result = self.sentiment_analyzer(text)
|
634 |
+
return {
|
635 |
+
"sentiment": result[0]['label'],
|
636 |
+
"score": result[0]['score']
|
637 |
+
}
|
638 |
+
except:
|
639 |
+
pass
|
640 |
+
|
641 |
+
return {"sentiment": "NEUTRAL", "score": 0.5}
|
642 |
+
|
643 |
+
def extract_keywords(self, text):
|
644 |
+
"""Extract keywords from text"""
|
645 |
+
# Simple keyword extraction
|
646 |
+
words = re.findall(r'\b\w+\b', text.lower())
|
647 |
+
# Filter out common words and keep meaningful ones
|
648 |
+
stopwords = {'the', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by', 'is', 'are', 'was', 'were'}
|
649 |
+
keywords = [w for w in words if len(w) > 3 and w not in stopwords]
|
650 |
+
return list(set(keywords))[:5] # Return top 5 unique keywords
|
651 |
+
|
652 |
+
def get_conversation_context(self):
|
653 |
+
"""Get recent conversation history as context"""
|
654 |
+
if not self.conversation_history:
|
655 |
+
return "No previous conversation"
|
656 |
+
|
657 |
+
context = []
|
658 |
+
for item in self.conversation_history[-3:]: # Last 3 exchanges
|
659 |
+
context.append(f"User: {item['user_message']}")
|
660 |
+
context.append(f"Bot: {item['bot_response'][:100]}...") # Truncate long responses
|
661 |
+
|
662 |
+
return " | ".join(context)
|
663 |
+
|
664 |
+
def add_to_history(self, user_message, bot_response, response_type):
|
665 |
+
"""Add exchange to conversation history"""
|
666 |
+
self.conversation_history.append({
|
667 |
+
'timestamp': datetime.now(),
|
668 |
+
'user_message': user_message,
|
669 |
+
'bot_response': bot_response,
|
670 |
+
'response_type': response_type
|
671 |
+
})
|
672 |
+
|
673 |
+
# Keep only recent history
|
674 |
+
if len(self.conversation_history) > self.max_history_length:
|
675 |
+
self.conversation_history = self.conversation_history[-self.max_history_length:]
|
676 |
+
|
677 |
+
def classify_intent(self, user_query, detected_language):
|
678 |
+
"""Classify if the user query requires API action or is conversational"""
|
679 |
+
try:
|
680 |
+
result = self.intent_chain.invoke({
|
681 |
+
"user_query": user_query,
|
682 |
+
"detected_language": detected_language,
|
683 |
+
"conversation_history": self.get_conversation_context(),
|
684 |
+
"endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2)
|
685 |
+
})
|
686 |
+
|
687 |
+
# Parse the JSON response
|
688 |
+
intent_text = result["text"]
|
689 |
+
# Clean and parse JSON
|
690 |
+
cleaned_response = re.sub(r'//.*?$', '', intent_text, flags=re.MULTILINE)
|
691 |
+
cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
|
692 |
+
cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
|
693 |
+
|
694 |
+
try:
|
695 |
+
intent_data = json.loads(cleaned_response)
|
696 |
+
return intent_data
|
697 |
+
except json.JSONDecodeError:
|
698 |
+
# Try to extract JSON from the response
|
699 |
+
json_match = re.search(r'\{.*?\}', cleaned_response, re.DOTALL)
|
700 |
+
if json_match:
|
701 |
+
intent_data = json.loads(json_match.group(0))
|
702 |
+
return intent_data
|
703 |
+
else:
|
704 |
+
# Default classification if parsing fails
|
705 |
+
return {
|
706 |
+
"intent": "CONVERSATION",
|
707 |
+
"confidence": 0.5,
|
708 |
+
"reasoning": "Failed to parse LLM response",
|
709 |
+
"requires_backend": False
|
710 |
+
}
|
711 |
+
except Exception as e:
|
712 |
+
print(f"Error in intent classification: {e}")
|
713 |
+
return {
|
714 |
+
"intent": "CONVERSATION",
|
715 |
+
"confidence": 0.5,
|
716 |
+
"reasoning": f"Error in classification: {str(e)}",
|
717 |
+
"requires_backend": False
|
718 |
+
}
|
719 |
+
|
720 |
+
def handle_conversation(self, user_query, detected_language, sentiment_result):
|
721 |
+
"""Handle conversational responses"""
|
722 |
+
try:
|
723 |
+
result = self.conversation_chain.invoke({
|
724 |
+
"user_query": user_query,
|
725 |
+
"detected_language": detected_language,
|
726 |
+
"sentiment_analysis": json.dumps(sentiment_result),
|
727 |
+
"conversation_history": self.get_conversation_context()
|
728 |
+
})
|
729 |
+
|
730 |
+
return result["text"].strip()
|
731 |
+
|
732 |
+
except Exception as e:
|
733 |
+
# Fallback response
|
734 |
+
if detected_language == "arabic":
|
735 |
+
return "أعتذر، واجهت مشكلة في المعالجة. كيف ��مكنني مساعدتك؟"
|
736 |
+
else:
|
737 |
+
return "I apologize, I encountered a processing issue. How can I help you?"
|
738 |
+
|
739 |
+
def backend_call(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
740 |
+
"""Make API call to backend with retry logic"""
|
741 |
+
endpoint_url = data.get('endpoint')
|
742 |
+
endpoint_method = data.get('method')
|
743 |
+
endpoint_params = data.get('params', {}).copy()
|
744 |
+
|
745 |
+
print('Sending the api request')
|
746 |
+
print(f"🔗 Making API call to {endpoint_method} {self.BASE_URL + endpoint_url} with params: {endpoint_params}")
|
747 |
+
|
748 |
+
# Inject patient_id if needed
|
749 |
+
if 'patient_id' in endpoint_params:
|
750 |
+
endpoint_params['patient_id'] = self.user_id
|
751 |
+
|
752 |
+
retries = 0
|
753 |
+
response = None
|
754 |
+
while retries < self.max_retries:
|
755 |
+
try:
|
756 |
+
if endpoint_method.upper() == 'GET':
|
757 |
+
response = requests.get(
|
758 |
+
self.BASE_URL + endpoint_url,
|
759 |
+
params=endpoint_params,
|
760 |
+
headers=self.headers,
|
761 |
+
timeout=10
|
762 |
+
)
|
763 |
+
elif endpoint_method.upper() in ['POST', 'PUT', 'DELETE']:
|
764 |
+
response = requests.request(
|
765 |
+
endpoint_method.upper(),
|
766 |
+
self.BASE_URL + endpoint_url,
|
767 |
+
json=endpoint_params,
|
768 |
+
headers=self.headers,
|
769 |
+
timeout=10
|
770 |
+
)
|
771 |
+
|
772 |
+
response.raise_for_status()
|
773 |
+
print('Backend Response : ', response.json())
|
774 |
+
return response.json()
|
775 |
+
|
776 |
+
except requests.exceptions.RequestException as e:
|
777 |
+
retries += 1
|
778 |
+
if retries >= self.max_retries:
|
779 |
+
return {
|
780 |
+
"error": "Backend API call failed after multiple retries",
|
781 |
+
"details": str(e),
|
782 |
+
"status_code": getattr(e.response, 'status_code', None) if hasattr(e, 'response') else None
|
783 |
+
}
|
784 |
+
|
785 |
+
time.sleep(self.retry_delay)
|
786 |
+
def parse_relative_date(self, text, detected_language):
|
787 |
+
"""
|
788 |
+
Parse relative dates from text using a combination of methods
|
789 |
+
"""
|
790 |
+
today = datetime.now()
|
791 |
+
|
792 |
+
# Handle common relative date patterns in English and Arabic
|
793 |
+
tomorrow_patterns = {
|
794 |
+
'english': [r'\btomorrow\b', r'\bnext day\b'],
|
795 |
+
'arabic': [r'\bغدا\b', r'\bبكرة\b', r'\bغدًا\b', r'\bالغد\b']
|
796 |
+
}
|
797 |
+
|
798 |
+
next_week_patterns = {
|
799 |
+
'english': [r'\bnext week\b'],
|
800 |
+
'arabic': [r'\bالأسبوع القادم\b', r'\bالأسبوع المقبل\b', r'\bالاسبوع الجاي\b']
|
801 |
+
}
|
802 |
+
|
803 |
+
# Check for "tomorrow" patterns
|
804 |
+
for pattern in tomorrow_patterns.get(detected_language, []) + tomorrow_patterns.get('english', []):
|
805 |
+
if re.search(pattern, text, re.IGNORECASE):
|
806 |
+
return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
|
807 |
+
|
808 |
+
# Check for "next week" patterns
|
809 |
+
for pattern in next_week_patterns.get(detected_language, []) + next_week_patterns.get('english', []):
|
810 |
+
if re.search(pattern, text, re.IGNORECASE):
|
811 |
+
return (today + timedelta(days=7)).strftime('%Y-%m-%dT%H:%M:%S')
|
812 |
+
|
813 |
+
# If NER model is available, use it to extract date entities
|
814 |
+
if self.date_parser and detected_language == 'english':
|
815 |
+
try:
|
816 |
+
date_entities = self.date_parser(text)
|
817 |
+
for entity in date_entities:
|
818 |
+
if entity['entity_group'] == 'DATE':
|
819 |
+
# Here you would need more complex date parsing logic
|
820 |
+
# This is just a placeholder
|
821 |
+
print(f"Found date entity: {entity['word']}")
|
822 |
+
# For now, just default to tomorrow if we detect any date
|
823 |
+
return (today + timedelta(days=1)).strftime('%Y-%m-%dT%H:%M:%S')
|
824 |
+
except Exception as e:
|
825 |
+
print(f"Error in date parsing: {e}")
|
826 |
+
|
827 |
+
# Default return None if no date pattern is recognized
|
828 |
+
return None
|
829 |
+
|
830 |
+
|
831 |
+
def handle_api_action(self, user_query, detected_language, sentiment_result, keywords):
|
832 |
+
"""Handle API-based actions"""
|
833 |
+
try:
|
834 |
+
|
835 |
+
# parsed_date = self.parse_relative_date(user_query, detected_language)
|
836 |
+
# if parsed_date:
|
837 |
+
# print(f"Parsed relative date: {parsed_date}")
|
838 |
+
|
839 |
+
# Route the query to determine API endpoint
|
840 |
+
router_result = self.router_chain.invoke({
|
841 |
+
"endpoints_documentation": json.dumps(self.endpoints_documentation, indent=2),
|
842 |
+
"user_query": user_query,
|
843 |
+
"detected_language": detected_language,
|
844 |
+
"extracted_keywords": ", ".join(keywords),
|
845 |
+
"sentiment_analysis": json.dumps(sentiment_result),
|
846 |
+
"conversation_history": self.get_conversation_context(),
|
847 |
+
"current_datetime": datetime.now().strftime('%Y-%m-%dT%H:%M:%S'),
|
848 |
+
"timezone": "UTC",
|
849 |
+
"user_locale": "en-US"
|
850 |
+
})
|
851 |
+
|
852 |
+
# Parse router response
|
853 |
+
route_text = router_result["text"]
|
854 |
+
# cleaned_response = re.sub(r'//.*?$', '', route_text, flags=re.MULTILINE)
|
855 |
+
# cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
|
856 |
+
# cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
|
857 |
+
|
858 |
+
# try:
|
859 |
+
# parsed_route = json.loads(cleaned_response)
|
860 |
+
# except json.JSONDecodeError:
|
861 |
+
# json_match = re.search(r'\{.*?\}', cleaned_response, re.DOTALL)
|
862 |
+
# if json_match:
|
863 |
+
# parsed_route = json.loads(json_match.group(0))
|
864 |
+
# else:
|
865 |
+
# raise ValueError("Could not parse routing response")
|
866 |
+
|
867 |
+
# print(f"🔍 Parsed route: {parsed_route}")
|
868 |
+
cleaned_response = route_text
|
869 |
+
|
870 |
+
# Remove any comments (both single-line and multi-line)
|
871 |
+
cleaned_response = re.sub(r'//.*?$', '', cleaned_response, flags=re.MULTILINE)
|
872 |
+
cleaned_response = re.sub(r'/\*.*?\*/', '', cleaned_response, flags=re.DOTALL)
|
873 |
+
|
874 |
+
# Remove any trailing commas
|
875 |
+
cleaned_response = re.sub(r',(\s*[}\]])', r'\1', cleaned_response)
|
876 |
+
|
877 |
+
# Try different methods to parse the JSON response
|
878 |
+
try:
|
879 |
+
# First attempt: direct JSON parsing of cleaned response
|
880 |
+
parsed_route = json.loads(cleaned_response)
|
881 |
+
except json.JSONDecodeError:
|
882 |
+
try:
|
883 |
+
# Second attempt: extract JSON from markdown code block
|
884 |
+
json_match = re.search(r'```(?:json)?\s*(\{.*?\})\s*```', cleaned_response, re.DOTALL)
|
885 |
+
if json_match:
|
886 |
+
parsed_route = json.loads(json_match.group(1))
|
887 |
+
except (json.JSONDecodeError, AttributeError):
|
888 |
+
try:
|
889 |
+
# Third attempt: find JSON-like content using regex
|
890 |
+
json_pattern = r'\{\s*"endpoint"\s*:.*?\}'
|
891 |
+
json_match = re.search(json_pattern, cleaned_response, re.DOTALL)
|
892 |
+
if json_match:
|
893 |
+
json_str = json_match.group(0)
|
894 |
+
# Additional cleaning for the extracted JSON
|
895 |
+
json_str = re.sub(r'//.*?$', '', json_str, flags=re.MULTILINE)
|
896 |
+
json_str = re.sub(r',(\s*[}\]])', r'\1', json_str)
|
897 |
+
parsed_route = json.loads(json_str)
|
898 |
+
except (json.JSONDecodeError, AttributeError):
|
899 |
+
print(f"Failed to parse JSON. Raw response: {route_text}")
|
900 |
+
print(f"Cleaned response: {cleaned_response}")
|
901 |
+
raise ValueError("Could not extract valid JSON from LLM response")
|
902 |
+
|
903 |
+
if not parsed_route:
|
904 |
+
raise ValueError("Failed to parse LLM response into valid JSON")
|
905 |
+
|
906 |
+
# Replace any placeholder values and inject parsed dates if available
|
907 |
+
if 'params' in parsed_route:
|
908 |
+
if 'patient_id' in parsed_route['params']:
|
909 |
+
parsed_route['params']['patient_id'] = self.user_id
|
910 |
+
else:
|
911 |
+
parsed_route['params']['patient_id'] = self.user_id
|
912 |
+
|
913 |
+
# Inject parsed date if available and a date parameter exists
|
914 |
+
# date_params = ['appointment_date', 'date', 'schedule_date', 'date_time', 'new_date_time']
|
915 |
+
# if parsed_date:
|
916 |
+
# for param in date_params:
|
917 |
+
# if param in parsed_route['params']:
|
918 |
+
# parsed_route['params'][param] = parsed_date
|
919 |
+
|
920 |
+
print('Parsed route: ', parsed_route)
|
921 |
+
|
922 |
+
# Make backend API call
|
923 |
+
api_response = self.backend_call(parsed_route)
|
924 |
+
|
925 |
+
print("🔗 API response received:", api_response)
|
926 |
+
# Generate user-friendly response
|
927 |
+
user_response_result = self.api_response_chain.invoke({
|
928 |
+
"user_query": user_query,
|
929 |
+
"api_response": json.dumps(api_response, indent=2),
|
930 |
+
"detected_language": detected_language,
|
931 |
+
"sentiment_analysis": json.dumps(sentiment_result),
|
932 |
+
})
|
933 |
+
|
934 |
+
print("🔗 API response:", user_response_result["text"].strip())
|
935 |
+
|
936 |
+
return {
|
937 |
+
"response": user_response_result["text"].strip(),
|
938 |
+
"api_data": api_response,
|
939 |
+
"routing_info": parsed_route
|
940 |
+
}
|
941 |
+
|
942 |
+
except Exception as e:
|
943 |
+
# Fallback error response
|
944 |
+
if detected_language == "arabic":
|
945 |
+
error_msg = "أعتذر، لم أتمكن من معالجة طلبك. يرجى المحاولة مرة أخرى أو صياغة السؤال بطريقة مختلفة."
|
946 |
+
else:
|
947 |
+
error_msg = "I apologize, I couldn't process your request. Please try again or rephrase your question."
|
948 |
+
|
949 |
+
return {
|
950 |
+
"response": error_msg,
|
951 |
+
"api_data": {"error": str(e)},
|
952 |
+
"routing_info": None
|
953 |
+
}
|
954 |
+
|
955 |
+
def chat(self, user_message: str) -> ChatResponse:
|
956 |
+
"""Main chat method that handles user messages"""
|
957 |
+
start_time = time.time()
|
958 |
+
|
959 |
+
# Check for exit commands
|
960 |
+
exit_commands = ['quit', 'exit', 'bye', 'خروج', 'وداعا', 'مع السلامة']
|
961 |
+
if user_message.lower().strip() in exit_commands:
|
962 |
+
return ChatResponse(
|
963 |
+
response_id=f"resp_{int(time.time())}",
|
964 |
+
response_type="conversation",
|
965 |
+
message="Goodbye! Take care of your health! / وداعاً! اعتن بصحتك!",
|
966 |
+
language="bilingual"
|
967 |
+
)
|
968 |
+
|
969 |
+
try:
|
970 |
+
# Language detection and analysis
|
971 |
+
detected_language = self.detect_language(user_message)
|
972 |
+
sentiment_result = self.analyze_sentiment(user_message)
|
973 |
+
keywords = self.extract_keywords(user_message)
|
974 |
+
|
975 |
+
print(f"🔍 Language: {detected_language} | Sentiment: {sentiment_result['sentiment']} | Keywords: {keywords}")
|
976 |
+
|
977 |
+
# Classify intent
|
978 |
+
intent_data = self.classify_intent(user_message, detected_language)
|
979 |
+
print(f"🎯 Intent: {intent_data['intent']} (confidence: {intent_data.get('confidence', 'N/A')})")
|
980 |
+
|
981 |
+
# Handle based on intent
|
982 |
+
if intent_data["intent"] == "API_ACTION" and intent_data.get("requires_backend", False):
|
983 |
+
# Handle API-based actions
|
984 |
+
print("🔗 Processing API action...")
|
985 |
+
action_result = self.handle_api_action(user_message, detected_language, sentiment_result, keywords)
|
986 |
+
|
987 |
+
# print(action_result)
|
988 |
+
|
989 |
+
response = ChatResponse(
|
990 |
+
response_id=f"resp_{int(time.time())}",
|
991 |
+
response_type="api_action",
|
992 |
+
message=action_result["response"],
|
993 |
+
api_call_made=True,
|
994 |
+
api_data=json.dumps(action_result["api_data"]) if 'action_result' in action_result else None,
|
995 |
+
language=detected_language
|
996 |
+
)
|
997 |
+
|
998 |
+
else:
|
999 |
+
# Handle conversational responses
|
1000 |
+
print("💬 Processing conversational response...")
|
1001 |
+
conv_response = self.handle_conversation(user_message, detected_language, sentiment_result)
|
1002 |
+
|
1003 |
+
response = ChatResponse(
|
1004 |
+
response_id=f"resp_{int(time.time())}",
|
1005 |
+
response_type="conversation",
|
1006 |
+
message=conv_response,
|
1007 |
+
api_call_made=False,
|
1008 |
+
language=detected_language
|
1009 |
+
)
|
1010 |
+
|
1011 |
+
# Add to conversation history
|
1012 |
+
self.add_to_history(user_message, response.message, response.response_type)
|
1013 |
+
|
1014 |
+
print(f"⏱️ Processing time: {time.time() - start_time:.2f}s")
|
1015 |
+
return response
|
1016 |
+
|
1017 |
+
except Exception as e:
|
1018 |
+
print(f"❌ Error in chat processing: {e}")
|
1019 |
+
error_msg = "I apologize for the technical issue. Please try again. / أعتذر عن المشكلة التقنية. يرجى المحاولة مرة أخرى."
|
1020 |
+
|
1021 |
+
return ChatResponse(
|
1022 |
+
response_id=f"resp_{int(time.time())}",
|
1023 |
+
response_type="conversation",
|
1024 |
+
message=error_msg,
|
1025 |
+
api_call_made=False,
|
1026 |
+
language="bilingual"
|
1027 |
+
)
|
1028 |
+
|
1029 |
+
def start_interactive_chat(self):
|
1030 |
+
"""Start an interactive chat session"""
|
1031 |
+
print("🚀 Starting interactive chat session...")
|
1032 |
+
|
1033 |
+
while True:
|
1034 |
+
try:
|
1035 |
+
# Get user input
|
1036 |
+
user_input = input("\n👤 You: ").strip()
|
1037 |
+
|
1038 |
+
if not user_input:
|
1039 |
+
continue
|
1040 |
+
|
1041 |
+
# Process the message
|
1042 |
+
print("🤖 Processing...")
|
1043 |
+
response = self.chat(user_input)
|
1044 |
+
|
1045 |
+
# Display response
|
1046 |
+
print(f"\n🏥 Healthcare Bot: {response.message}")
|
1047 |
+
|
1048 |
+
# Show additional info if API call was made
|
1049 |
+
if response.api_call_made and response.api_data:
|
1050 |
+
if "error" not in response.api_data:
|
1051 |
+
print("✅ Successfully retrieved information from healthcare system")
|
1052 |
+
else:
|
1053 |
+
print("⚠️ There was an issue accessing the healthcare system")
|
1054 |
+
|
1055 |
+
# Check for exit
|
1056 |
+
if "Goodbye" in response.message or "وداعاً" in response.message:
|
1057 |
+
break
|
1058 |
+
|
1059 |
+
except KeyboardInterrupt:
|
1060 |
+
print("\n\n👋 Chat session ended. Goodbye!")
|
1061 |
+
break
|
1062 |
+
except Exception as e:
|
1063 |
+
print(f"\n❌ Unexpected error: {e}")
|
1064 |
+
print("The chat session will continue...")
|
1065 |
+
# Create a simple function to start the chatbot
|
1066 |
+
# def start_healthcare_chatbot():
|
1067 |
+
# """Initialize and start the healthcare chatbot"""
|
1068 |
+
# try:
|
1069 |
+
# chatbot = HealthcareChatbot()
|
1070 |
+
# chatbot.start_interactive_chat()
|
1071 |
+
# except Exception as e:
|
1072 |
+
# print(f"Failed to start chatbot: {e}")
|
1073 |
+
# print("Please check your Ollama installation and endpoint documentation.")
|
1074 |
+
|
1075 |
+
|
1076 |
+
# Test the chatbot
|
1077 |
+
# if __name__ == "__main__":
|
1078 |
+
# You can test individual messages like this:
|
1079 |
+
# chatbot = HealthcareChatbot()
|
1080 |
+
|
1081 |
+
# Test conversational message
|
1082 |
+
# print("\n=== TESTING CONVERSATIONAL MESSAGE ===")
|
1083 |
+
# conv_response = chatbot.chat("Hello, how are you today?")
|
1084 |
+
# print(f"Response: {conv_response.message}")
|
1085 |
+
# print(f"Type: {conv_response.response_type}")
|
1086 |
+
|
1087 |
+
# Test API action message
|
1088 |
+
# print("\n=== TESTING API ACTION MESSAGE ===")
|
1089 |
+
# api_response = chatbot.chat("I want to book an appointment tomorrow at 2 PM")
|
1090 |
+
# print(f"Response: {api_response.message}")
|
1091 |
+
# print(f"Type: {api_response.response_type}")
|
1092 |
+
# print(f"API Called: {api_response.api_call_made}")
|
1093 |
+
|
1094 |
+
# Start interactive session (uncomment to run)
|
1095 |
+
# start_healthcare_chatbot()
|
1096 |
+
|
1097 |
+
# Fast api section
|
1098 |
+
from fastapi import FastAPI, HTTPException
|
1099 |
+
from pydantic import BaseModel
|
1100 |
+
from typing import Dict, Any, Optional
|
1101 |
+
|
1102 |
+
|
1103 |
+
app = FastAPI(
|
1104 |
+
title="Healthcare AI Assistant",
|
1105 |
+
description="An AI-powered healthcare assistant that handles appointment booking and queries",
|
1106 |
+
version="1.0.0"
|
1107 |
+
)
|
1108 |
+
|
1109 |
+
# Initialize the AI agent
|
1110 |
+
agent = HealthcareChatbot()
|
1111 |
+
|
1112 |
+
class QueryRequest(BaseModel):
|
1113 |
+
query: str
|
1114 |
+
|
1115 |
+
class QueryResponse(BaseModel):
|
1116 |
+
routing_info: Dict[str, Any]
|
1117 |
+
api_response: Dict[str, Any]
|
1118 |
+
user_friendly_response: str
|
1119 |
+
detected_language: str
|
1120 |
+
sentiment: Dict[str, Any]
|
1121 |
+
|
1122 |
+
@app.post("/query")
|
1123 |
+
async def process_query(request: QueryRequest):
|
1124 |
+
"""
|
1125 |
+
Process a user query and return a response
|
1126 |
+
"""
|
1127 |
+
try:
|
1128 |
+
response = agent.chat(request.query)
|
1129 |
+
return response
|
1130 |
+
except Exception as e:
|
1131 |
+
raise HTTPException(status_code=500, detail=str(e))
|
1132 |
+
|
1133 |
+
@app.get("/health")
|
1134 |
+
async def health_check():
|
1135 |
+
"""
|
1136 |
+
Health check endpoint
|
1137 |
+
"""
|
1138 |
+
return {"status": "healthy", "service": "healthcare-ai-assistant"}
|
1139 |
+
|
1140 |
+
@app.get("/")
|
1141 |
+
async def root():
|
1142 |
+
return {"message": "Hello World"}
|
1143 |
+
|
1144 |
+
# if __name__ == "__main__":
|
1145 |
+
# import uvicorn
|
1146 |
+
# uvicorn.run(app, host="0.0.0.0", port=8000)
|