File size: 9,865 Bytes
dc3747b
1f15859
30ca71a
fa0e902
 
398a7eb
a8c3b23
dee81c5
03b5e22
dee81c5
 
 
 
 
 
 
 
 
03b5e22
dc3747b
 
fa0e902
 
dc3747b
 
 
 
 
fa0e902
 
dee81c5
 
fa0e902
 
 
 
 
398a7eb
 
 
fa0e902
 
8c5712e
ffe13aa
dee81c5
8c5712e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dee81c5
 
8c5712e
dee81c5
 
 
03b5e22
dee81c5
dc3747b
dee81c5
 
 
ffe13aa
 
 
1f15859
 
dee81c5
 
398a7eb
8c5712e
 
 
 
dee81c5
8c5712e
 
 
03b5e22
 
 
 
dee81c5
03b5e22
 
 
 
 
 
 
398a7eb
 
a8c3b23
8c5712e
 
 
 
 
 
 
 
 
 
 
 
 
 
fa0e902
 
8c5712e
 
 
 
 
 
 
 
dee81c5
8c5712e
 
 
 
 
 
 
 
 
 
 
 
ffe13aa
8c5712e
 
 
 
 
ffe13aa
8c5712e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffe13aa
dee81c5
ffe13aa
dee81c5
ffe13aa
8c5712e
 
ffe13aa
 
8c5712e
398a7eb
 
 
fa0e902
8c5712e
 
 
 
 
 
 
 
 
fa0e902
 
 
 
ffe13aa
 
 
 
 
fa0e902
 
 
 
 
 
398a7eb
fa0e902
a8c3b23
8c5712e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc3747b
 
8c5712e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset
import random
import re

SYSTEM_PROMPT = """
You are a medical expert. Answer the medical question with careful analysis and explain why the selected option is correct in 2 sentences without repeating.
Respond in the following format:
<answer>
[correct answer]
</answer>
<reasoning>
[explain why the selected option is correct]
</reasoning>
"""

model_name = "abaryan/BioXP-0.5B-MedMCQA"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
dataset = load_dataset("openlifescienceai/medmcqa")

# Move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
model.eval()

def get_random_question():
    """Get a random question from the dataset"""
    index = random.randint(0, len(dataset['validation']) - 1)
    question_data = dataset['validation'][index]
    return (
        question_data['question'],
        question_data['opa'],
        question_data['opb'],
        question_data['opc'],
        question_data['opd'],
        question_data.get('cop', None),  # Correct option (0-3)
        question_data.get('exp', None)   # Explanation
    )

def predict(question: str, option_a: str = "", option_b: str = "", option_c: str = "", option_d: str = "", 
           correct_option: int = None, explanation: str = None,
           temperature: float = 0.6, top_p: float = 0.9, max_tokens: int = 256):
    
    # Determine if this is an MCQ by checking if any option is provided
    is_mcq = any(opt.strip() for opt in [option_a, option_b, option_c, option_d])
    
    if is_mcq:
        options = []
        if option_a.strip(): options.append(f"A. {option_a}")
        if option_b.strip(): options.append(f"B. {option_b}")
        if option_c.strip(): options.append(f"C. {option_c}")
        if option_d.strip(): options.append(f"D. {option_d}")
        
        formatted_question = f"Question: {question}\n\nOptions:\n" + "\n".join(options)
        system_prompt = SYSTEM_PROMPT
    else:
        # Format regular question
        formatted_question = f"Question: {question}"
        system_prompt = SYSTEM_PROMPT
    
    prompt = [
        {'role': 'system', 'content': system_prompt},
        {'role': 'user', 'content': formatted_question}
    ]
    
    text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)    
    model_inputs = tokenizer([text], return_tensors="pt").to(device)
    
    with torch.inference_mode():
        generated_ids = model.generate(
            **model_inputs,
            max_new_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
        )
    
    generated_ids = generated_ids[0, model_inputs.input_ids.shape[1]:]
    model_response = tokenizer.decode(generated_ids, skip_special_tokens=True)
    
    # Clean up the response by removing tags and formatting
    cleaned_response = model_response
    cleaned_response = re.sub(r'<answer>\s*([A-D])\s*</answer>', r'Answer: \1', cleaned_response, flags=re.IGNORECASE)
    cleaned_response = re.sub(r'<reasoning>\s*(.*?)\s*</reasoning>', r'Reasoning:\n\1', cleaned_response, flags=re.IGNORECASE | re.DOTALL)
    
    # Format output with evaluation if available (only for MCQs)
    output = cleaned_response
    
    # if is_mcq and correct_option is not None:
    #     correct_letter = chr(65 + correct_option)
    #     answer_match = re.search(r"Answer:\s*([A-D])", cleaned_response, re.IGNORECASE)
    #     model_answer = answer_match.group(1).upper() if answer_match else "Not found"
        
    #     is_correct = model_answer == correct_letter
    #     output += f"\n\n---\nEvaluation:\n"
    #     output += f"Correct Answer: {correct_letter}\n"
    #     output += f"Model's Answer: {model_answer}\n"
    #     output += f"Result: {'✅ Correct' if is_correct else '❌ Incorrect'}\n"
    #     if explanation:
    #         output += f"\nExpert Explanation:\n{explanation}"
    
    return output

with gr.Blocks(
    title="BioXP Medical MCQ Assistant",
    theme=gr.themes.Soft(
        primary_hue="blue",
        secondary_hue="blue",
        neutral_hue="slate",
        radius_size="md",
        font=["Inter", "ui-sans-serif", "system-ui", "sans-serif"],
    )
) as demo:
    gr.Markdown("""
    # BioXP Medical MCQ Assistant
    A specialized AI assistant for medical multiple-choice questions.
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            question = gr.Textbox(
                label="Medical Question",
                placeholder="Enter your medical question here...",
                lines=3,
                interactive=True,
                elem_classes=["mobile-input"]
            )
            
            with gr.Accordion("Options", open=True):
                option_a = gr.Textbox(
                    label="Option A",
                    placeholder="Enter option A...",
                    interactive=True,
                    elem_classes=["mobile-input"]
                )
                option_b = gr.Textbox(
                    label="Option B",
                    placeholder="Enter option B...",
                    interactive=True,
                    elem_classes=["mobile-input"]
                )
                option_c = gr.Textbox(
                    label="Option C",
                    placeholder="Enter option C...",
                    interactive=True,
                    elem_classes=["mobile-input"]
                )
                option_d = gr.Textbox(
                    label="Option D",
                    placeholder="Enter option D...",
                    interactive=True,
                    elem_classes=["mobile-input"]
                )
            
            with gr.Accordion("Advanced Settings", open=False):
                with gr.Row():
                    with gr.Column(scale=1):
                        temperature = gr.Slider(
                            minimum=0.1,
                            maximum=1.0,
                            value=0.6,
                            step=0.1,
                            label="Temperature",
                            info="Higher = more creative, Lower = more focused"
                        )
                    with gr.Column(scale=1):
                        top_p = gr.Slider(
                            minimum=0.1,
                            maximum=1.0,
                            value=0.9,
                            step=0.1,
                            label="Top P",
                            info="Controls response diversity"
                        )
                max_tokens = gr.Slider(
                    minimum=50,
                    maximum=512,
                    value=256,
                    step=32,
                    label="Max Response Length",
                    info="Maximum length of the response"
                )
            
            # Hidden fields
            correct_option = gr.Number(visible=False)
            expert_explanation = gr.Textbox(visible=False)
            
            with gr.Row():
                predict_btn = gr.Button("Get Answer", variant="primary", size="lg", elem_classes=["mobile-button"])
                random_btn = gr.Button("Random Question", variant="secondary", size="lg", elem_classes=["mobile-button"])
        
        with gr.Column(scale=1):
            output = gr.Textbox(
                label="Model's Response",
                lines=12,
                elem_classes=["response-box", "mobile-output"]
            )
    
    # Set up button actions
    predict_btn.click(
        fn=predict,
        inputs=[
            question, option_a, option_b, option_c, option_d,
            correct_option, expert_explanation,
            temperature, top_p, max_tokens
        ],
        outputs=output
    )
    
    random_btn.click(
        fn=get_random_question,
        inputs=[],
        outputs=[question, option_a, option_b, option_c, option_d, correct_option, expert_explanation]
    )

    gr.HTML("""
    <style>
        .container {
            max-width: 100%;
            padding: 0.5rem;
        }
        
        /* Input styling */
        .mobile-input textarea {
            font-size: 1rem;
            padding: 0.75rem;
            border-radius: 0.5rem;
            min-height: 2.5rem;
        }
        
        /* Button styling */
        .mobile-button {
            width: 100%;
            margin: 0.5rem 0;
            padding: 0.75rem;
            font-size: 1rem;
            font-weight: 500;
        }
        
        .response-box {
            font-family: 'Inter', sans-serif;
            line-height: 1.6;
        }
        .response-box textarea {
            font-size: 1rem;
            padding: 1rem;
            border-radius: 0.5rem;
        }
        
        /* Mobile-specific adjustments */
        @media (max-width: 768px) {
            .gr-form {
                padding: 0.75rem;
            }
            .gr-box {
                margin: 0.5rem 0;
            }
            .gr-button {
                min-height: 2.5rem;
            }
            .gr-accordion {
                margin: 0.5rem 0;
            }
            .gr-input {
                margin-bottom: 0.5rem;
            }
        }
        
        /* Dark mode support */
        @media (prefers-color-scheme: dark) {
            .gr-box {
                background-color: #1a1a1a;
            }
            .mobile-input textarea,
            .response-box textarea {
                background-color: #2a2a2a;
                color: #ffffff;
            }
        }
    </style>
    """)

# Launch the app
if __name__ == "__main__":
    demo.launch(share=False)