Spaces:
Running
Running
Abaryan
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,228 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("rgb2gbr/GRPO_BioMedmcqa_Qwen2.5-0.5B")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from pydantic import BaseModel
|
4 |
+
import torch
|
5 |
+
from transformers import AutoModelForMultipleChoice, AutoTokenizer
|
6 |
+
import os
|
7 |
+
from datasets import load_dataset
|
8 |
+
import random
|
9 |
+
from typing import Optional, List
|
10 |
import gradio as gr
|
|
|
11 |
|
12 |
+
app = FastAPI()
|
|
|
|
|
|
|
13 |
|
14 |
+
# Add CORS middleware for Gradio
|
15 |
+
app.add_middleware(
|
16 |
+
CORSMiddleware,
|
17 |
+
allow_origins=["*"],
|
18 |
+
allow_credentials=True,
|
19 |
+
allow_methods=["*"],
|
20 |
+
allow_headers=["*"],
|
21 |
+
)
|
22 |
|
23 |
+
# Define input models
|
24 |
+
class QuestionRequest(BaseModel):
|
25 |
+
question: str
|
26 |
+
options: list[str] # List of 4 options
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
class DatasetQuestion(BaseModel):
|
29 |
+
question: str
|
30 |
+
opa: str
|
31 |
+
opb: str
|
32 |
+
opc: str
|
33 |
+
opd: str
|
34 |
+
cop: Optional[int] = None # Correct option (0-3)
|
35 |
+
exp: Optional[str] = None # Explanation if available
|
36 |
|
37 |
+
# Global variables
|
38 |
+
model = None
|
39 |
+
tokenizer = None
|
40 |
+
dataset = None
|
41 |
|
42 |
+
def load_model():
|
43 |
+
global model, tokenizer, dataset
|
44 |
+
try:
|
45 |
+
# Load your fine-tuned model and tokenizer
|
46 |
+
model_name = os.getenv("BioXP-0.5b", "rgb2gbr/GRPO_BioMedmcqa_Qwen2.5-0.5B")
|
47 |
+
model = AutoModelForMultipleChoice.from_pretrained(model_name)
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
49 |
+
|
50 |
+
# Load MedMCQA dataset
|
51 |
+
dataset = load_dataset("openlifescienceai/medmcqa")
|
52 |
+
|
53 |
+
# Move model to GPU if available
|
54 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
55 |
+
model = model.to(device)
|
56 |
+
model.eval()
|
57 |
+
except Exception as e:
|
58 |
+
raise Exception(f"Error loading model: {str(e)}")
|
59 |
|
60 |
+
def predict_gradio(question: str, option_a: str, option_b: str, option_c: str, option_d: str):
|
61 |
+
"""Gradio interface prediction function"""
|
62 |
+
try:
|
63 |
+
options = [option_a, option_b, option_c, option_d]
|
64 |
+
inputs = []
|
65 |
+
for option in options:
|
66 |
+
text = f"{question} {option}"
|
67 |
+
inputs.append(text)
|
68 |
+
|
69 |
+
encodings = tokenizer(
|
70 |
+
inputs,
|
71 |
+
padding=True,
|
72 |
+
truncation=True,
|
73 |
+
max_length=512,
|
74 |
+
return_tensors="pt"
|
75 |
+
)
|
76 |
+
|
77 |
+
device = next(model.parameters()).device
|
78 |
+
encodings = {k: v.to(device) for k, v in encodings.items()}
|
79 |
+
|
80 |
+
with torch.no_grad():
|
81 |
+
outputs = model(**encodings)
|
82 |
+
logits = outputs.logits
|
83 |
+
probabilities = torch.softmax(logits, dim=1)[0].tolist()
|
84 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
85 |
+
|
86 |
+
# Format the output for Gradio
|
87 |
+
result = f"Predicted Answer: {options[predicted_class]}\n\n"
|
88 |
+
result += "Confidence Scores:\n"
|
89 |
+
for i, (opt, prob) in enumerate(zip(options, probabilities)):
|
90 |
+
result += f"{opt}: {prob:.2%}\n"
|
91 |
+
|
92 |
+
return result
|
93 |
+
|
94 |
+
except Exception as e:
|
95 |
+
return f"Error: {str(e)}"
|
96 |
|
97 |
+
def get_random_question():
|
98 |
+
"""Get a random question for Gradio interface"""
|
99 |
+
if dataset is None:
|
100 |
+
return "Error: Dataset not loaded", "", "", "", ""
|
101 |
+
|
102 |
+
index = random.randint(0, len(dataset['train']) - 1)
|
103 |
+
question_data = dataset['train'][index]
|
104 |
+
|
105 |
+
return (
|
106 |
+
question_data['question'],
|
107 |
+
question_data['opa'],
|
108 |
+
question_data['opb'],
|
109 |
+
question_data['opc'],
|
110 |
+
question_data['opd']
|
111 |
+
)
|
112 |
|
113 |
+
# Create Gradio interface
|
114 |
+
with gr.Blocks(title="Medical MCQ Predictor") as demo:
|
115 |
+
gr.Markdown("# Medical MCQ Predictor")
|
116 |
+
gr.Markdown("Enter a medical question and its options, or get a random question from MedMCQA dataset.")
|
117 |
+
|
118 |
+
with gr.Row():
|
119 |
+
with gr.Column():
|
120 |
+
question = gr.Textbox(label="Question", lines=3)
|
121 |
+
option_a = gr.Textbox(label="Option A")
|
122 |
+
option_b = gr.Textbox(label="Option B")
|
123 |
+
option_c = gr.Textbox(label="Option C")
|
124 |
+
option_d = gr.Textbox(label="Option D")
|
125 |
+
|
126 |
+
with gr.Row():
|
127 |
+
predict_btn = gr.Button("Predict")
|
128 |
+
random_btn = gr.Button("Get Random Question")
|
129 |
+
|
130 |
+
output = gr.Textbox(label="Prediction", lines=5)
|
131 |
+
|
132 |
+
predict_btn.click(
|
133 |
+
fn=predict_gradio,
|
134 |
+
inputs=[question, option_a, option_b, option_c, option_d],
|
135 |
+
outputs=output
|
136 |
+
)
|
137 |
+
|
138 |
+
random_btn.click(
|
139 |
+
fn=get_random_question,
|
140 |
+
inputs=[],
|
141 |
+
outputs=[question, option_a, option_b, option_c, option_d]
|
142 |
+
)
|
143 |
|
144 |
+
# Mount Gradio app to FastAPI
|
145 |
+
app = gr.mount_gradio_app(app, demo, path="/")
|
146 |
+
|
147 |
+
@app.on_event("startup")
|
148 |
+
async def startup_event():
|
149 |
+
load_model()
|
150 |
+
|
151 |
+
@app.get("/dataset/question")
|
152 |
+
async def get_dataset_question(index: Optional[int] = None, random_question: bool = False):
|
153 |
+
"""Get a question from the MedMCQA dataset"""
|
154 |
+
try:
|
155 |
+
if dataset is None:
|
156 |
+
raise HTTPException(status_code=500, detail="Dataset not loaded")
|
157 |
+
|
158 |
+
if random_question:
|
159 |
+
index = random.randint(0, len(dataset['train']) - 1)
|
160 |
+
elif index is None:
|
161 |
+
raise HTTPException(status_code=400, detail="Either index or random_question must be provided")
|
162 |
+
|
163 |
+
question_data = dataset['train'][index]
|
164 |
+
|
165 |
+
question = DatasetQuestion(
|
166 |
+
question=question_data['question'],
|
167 |
+
opa=question_data['opa'],
|
168 |
+
opb=question_data['opb'],
|
169 |
+
opc=question_data['opc'],
|
170 |
+
opd=question_data['opd'],
|
171 |
+
cop=question_data['cop'] if 'cop' in question_data else None,
|
172 |
+
exp=question_data['exp'] if 'exp' in question_data else None
|
173 |
+
)
|
174 |
+
|
175 |
+
return question
|
176 |
+
|
177 |
+
except Exception as e:
|
178 |
+
raise HTTPException(status_code=500, detail=str(e))
|
179 |
|
180 |
+
@app.post("/predict")
|
181 |
+
async def predict(request: QuestionRequest):
|
182 |
+
if len(request.options) != 4:
|
183 |
+
raise HTTPException(status_code=400, detail="Exactly 4 options are required")
|
184 |
+
|
185 |
+
try:
|
186 |
+
inputs = []
|
187 |
+
for option in request.options:
|
188 |
+
text = f"{request.question} {option}"
|
189 |
+
inputs.append(text)
|
190 |
+
|
191 |
+
encodings = tokenizer(
|
192 |
+
inputs,
|
193 |
+
padding=True,
|
194 |
+
truncation=True,
|
195 |
+
max_length=512,
|
196 |
+
return_tensors="pt"
|
197 |
+
)
|
198 |
+
|
199 |
+
device = next(model.parameters()).device
|
200 |
+
encodings = {k: v.to(device) for k, v in encodings.items()}
|
201 |
+
|
202 |
+
with torch.no_grad():
|
203 |
+
outputs = model(**encodings)
|
204 |
+
logits = outputs.logits
|
205 |
+
probabilities = torch.softmax(logits, dim=1)[0].tolist()
|
206 |
+
predicted_class = torch.argmax(logits, dim=1).item()
|
207 |
+
|
208 |
+
response = {
|
209 |
+
"predicted_option": request.options[predicted_class],
|
210 |
+
"option_index": predicted_class,
|
211 |
+
"confidence": probabilities[predicted_class],
|
212 |
+
"probabilities": {
|
213 |
+
f"option_{i}": prob for i, prob in enumerate(probabilities)
|
214 |
+
}
|
215 |
+
}
|
216 |
+
|
217 |
+
return response
|
218 |
+
|
219 |
+
except Exception as e:
|
220 |
+
raise HTTPException(status_code=500, detail=str(e))
|
221 |
|
222 |
+
@app.get("/health")
|
223 |
+
async def health_check():
|
224 |
+
return {
|
225 |
+
"status": "healthy",
|
226 |
+
"model_loaded": model is not None,
|
227 |
+
"dataset_loaded": dataset is not None
|
228 |
+
}
|