Spaces:
Running
Running
Abaryan
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,263 +1,53 @@
|
|
1 |
-
|
2 |
-
from fastapi.middleware.cors import CORSMiddleware
|
3 |
-
from pydantic import BaseModel
|
4 |
import torch
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
-
import os
|
7 |
-
from datasets import load_dataset
|
8 |
-
import random
|
9 |
-
from typing import Optional, List, Tuple, Union
|
10 |
-
import gradio as gr
|
11 |
-
from contextlib import asynccontextmanager
|
12 |
-
|
13 |
-
# Global variables
|
14 |
-
model = None
|
15 |
-
tokenizer = None
|
16 |
-
dataset = None
|
17 |
-
|
18 |
-
@asynccontextmanager
|
19 |
-
async def lifespan(app: FastAPI):
|
20 |
-
# Startup: Load the model
|
21 |
-
global model, tokenizer, dataset
|
22 |
-
try:
|
23 |
-
# Load your fine-tuned model and tokenizer
|
24 |
-
model_name = os.getenv("MODEL_NAME", "rgb2gbr/BioXP-0.5B-MedMCQA")
|
25 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
26 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
27 |
-
|
28 |
-
# Load MedMCQA dataset
|
29 |
-
dataset = load_dataset("openlifescienceai/medmcqa")
|
30 |
-
|
31 |
-
# Move model to GPU if available
|
32 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
33 |
-
model = model.to(device)
|
34 |
-
model.eval()
|
35 |
-
except Exception as e:
|
36 |
-
print(f"Error loading model: {str(e)}")
|
37 |
-
raise e
|
38 |
-
|
39 |
-
yield # This is where FastAPI serves the application
|
40 |
-
|
41 |
-
# Shutdown: Clean up resources if needed
|
42 |
-
if model is not None:
|
43 |
-
del model
|
44 |
-
if tokenizer is not None:
|
45 |
-
del tokenizer
|
46 |
-
if dataset is not None:
|
47 |
-
del dataset
|
48 |
-
torch.cuda.empty_cache()
|
49 |
-
|
50 |
-
app = FastAPI(lifespan=lifespan)
|
51 |
-
|
52 |
-
# Add CORS middleware for Gradio
|
53 |
-
app.add_middleware(
|
54 |
-
CORSMiddleware,
|
55 |
-
allow_origins=["*"],
|
56 |
-
allow_credentials=True,
|
57 |
-
allow_methods=["*"],
|
58 |
-
allow_headers=["*"],
|
59 |
-
)
|
60 |
-
|
61 |
-
# Define input models
|
62 |
-
class QuestionRequest(BaseModel):
|
63 |
-
question: str
|
64 |
-
options: list[str] # List of 4 options
|
65 |
-
|
66 |
-
class DatasetQuestion(BaseModel):
|
67 |
-
question: str
|
68 |
-
opa: str
|
69 |
-
opb: str
|
70 |
-
opc: str
|
71 |
-
opd: str
|
72 |
-
cop: Optional[int] = None # Correct option (0-3)
|
73 |
-
exp: Optional[str] = None # Explanation if available
|
74 |
-
|
75 |
-
def format_prompt(question: str, options: List[str]) -> str:
|
76 |
-
"""Format the prompt for the model"""
|
77 |
-
prompt = f"Question: {question}\n\nOptions:\n"
|
78 |
-
for i, opt in enumerate(options):
|
79 |
-
prompt += f"{chr(65+i)}. {opt}\n"
|
80 |
-
prompt += "\nAnswer:"
|
81 |
-
return prompt
|
82 |
-
|
83 |
-
def get_question(index: Optional[int] = None, random_question: bool = False, format: str = "api") -> Union[DatasetQuestion, Tuple[str, str, str, str, str]]:
|
84 |
-
"""
|
85 |
-
Get a question from the dataset.
|
86 |
-
Args:
|
87 |
-
index: Optional question index
|
88 |
-
random_question: Whether to get a random question
|
89 |
-
format: 'api' for DatasetQuestion object, 'gradio' for tuple
|
90 |
-
"""
|
91 |
-
if dataset is None:
|
92 |
-
raise Exception("Dataset not loaded")
|
93 |
-
|
94 |
-
if random_question:
|
95 |
-
index = random.randint(0, len(dataset['train']) - 1)
|
96 |
-
elif index is None:
|
97 |
-
raise ValueError("Either index or random_question must be provided")
|
98 |
-
|
99 |
-
question_data = dataset['train'][index]
|
100 |
-
|
101 |
-
if format == "gradio":
|
102 |
-
return (
|
103 |
-
question_data['question'],
|
104 |
-
question_data['opa'],
|
105 |
-
question_data['opb'],
|
106 |
-
question_data['opc'],
|
107 |
-
question_data['opd']
|
108 |
-
)
|
109 |
-
|
110 |
-
return DatasetQuestion(
|
111 |
-
question=question_data['question'],
|
112 |
-
opa=question_data['opa'],
|
113 |
-
opb=question_data['opb'],
|
114 |
-
opc=question_data['opc'],
|
115 |
-
opd=question_data['opd'],
|
116 |
-
cop=question_data['cop'] if 'cop' in question_data else None,
|
117 |
-
exp=question_data['exp'] if 'exp' in question_data else None
|
118 |
-
)
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
)
|
136 |
-
|
137 |
-
device = next(model.parameters()).device
|
138 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
139 |
-
|
140 |
-
# Generate prediction
|
141 |
-
with torch.no_grad():
|
142 |
-
outputs = model.generate(
|
143 |
-
**inputs,
|
144 |
-
max_new_tokens=10,
|
145 |
-
num_return_sequences=1,
|
146 |
-
temperature=0.7,
|
147 |
-
do_sample=False,
|
148 |
-
pad_token_id=tokenizer.eos_token_id
|
149 |
-
)
|
150 |
-
|
151 |
-
# Decode the output
|
152 |
-
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
153 |
-
|
154 |
-
# Extract the answer from the prediction
|
155 |
-
answer = prediction.split("Answer:")[-1].strip()
|
156 |
-
|
157 |
-
# Format the output for Gradio
|
158 |
-
result = f"Model Output:\n{prediction}\n\n"
|
159 |
-
result += f"Extracted Answer: {answer}"
|
160 |
-
|
161 |
-
return result
|
162 |
|
163 |
-
|
164 |
-
|
|
|
165 |
|
166 |
# Create Gradio interface
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
predict_btn = gr.Button("Predict")
|
181 |
-
random_btn = gr.Button("Get Random Question")
|
182 |
-
|
183 |
-
output = gr.Textbox(label="Prediction", lines=5)
|
184 |
-
|
185 |
-
predict_btn.click(
|
186 |
-
fn=predict_gradio,
|
187 |
-
inputs=[question, option_a, option_b, option_c, option_d],
|
188 |
-
outputs=output
|
189 |
-
)
|
190 |
-
|
191 |
-
random_btn.click(
|
192 |
-
fn=lambda: get_question(random_question=True, format="gradio"),
|
193 |
-
inputs=[],
|
194 |
-
outputs=[question, option_a, option_b, option_c, option_d]
|
195 |
-
)
|
196 |
-
|
197 |
-
# Mount Gradio app to FastAPI
|
198 |
-
app = gr.mount_gradio_app(app, demo, path="/")
|
199 |
-
|
200 |
-
@app.get("/dataset/question")
|
201 |
-
async def get_dataset_question(index: Optional[int] = None, random_question: bool = False):
|
202 |
-
"""Get a question from the MedMCQA dataset"""
|
203 |
-
try:
|
204 |
-
return get_question(index=index, random_question=random_question)
|
205 |
-
except Exception as e:
|
206 |
-
raise HTTPException(status_code=500, detail=str(e))
|
207 |
-
|
208 |
-
@app.post("/predict")
|
209 |
-
async def predict(request: QuestionRequest):
|
210 |
-
if len(request.options) != 4:
|
211 |
-
raise HTTPException(status_code=400, detail="Exactly 4 options are required")
|
212 |
-
|
213 |
-
try:
|
214 |
-
# Format the prompt
|
215 |
-
prompt = format_prompt(request.question, request.options)
|
216 |
-
|
217 |
-
# Tokenize the input
|
218 |
-
inputs = tokenizer(
|
219 |
-
prompt,
|
220 |
-
return_tensors="pt",
|
221 |
-
padding=True,
|
222 |
-
truncation=True,
|
223 |
-
max_length=512
|
224 |
-
)
|
225 |
-
|
226 |
-
device = next(model.parameters()).device
|
227 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
228 |
-
|
229 |
-
# Generate prediction
|
230 |
-
with torch.no_grad():
|
231 |
-
outputs = model.generate(
|
232 |
-
**inputs,
|
233 |
-
max_new_tokens=10,
|
234 |
-
num_return_sequences=1,
|
235 |
-
temperature=0.7,
|
236 |
-
do_sample=False,
|
237 |
-
pad_token_id=tokenizer.eos_token_id
|
238 |
-
)
|
239 |
-
|
240 |
-
# Decode the output
|
241 |
-
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
242 |
-
|
243 |
-
# Extract the answer from the prediction
|
244 |
-
answer = prediction.split("Answer:")[-1].strip()
|
245 |
-
|
246 |
-
response = {
|
247 |
-
"model_output": prediction,
|
248 |
-
"extracted_answer": answer,
|
249 |
-
"full_response": prediction
|
250 |
-
}
|
251 |
-
|
252 |
-
return response
|
253 |
-
|
254 |
-
except Exception as e:
|
255 |
-
raise HTTPException(status_code=500, detail=str(e))
|
256 |
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
"status": "healthy",
|
261 |
-
"model_loaded": model is not None,
|
262 |
-
"dataset_loaded": dataset is not None
|
263 |
-
}
|
|
|
1 |
+
import gradio as gr
|
|
|
|
|
2 |
import torch
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Load model and tokenizer
|
6 |
+
model_name = "rgb2gbr/GRPO_BioMedmcqa_Qwen2.5-0.5B"
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Move model to GPU if available
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
model = model.to(device)
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
def predict(question: str, option_a: str, option_b: str, option_c: str, option_d: str):
|
16 |
+
# Format the prompt
|
17 |
+
prompt = f"Question: {question}\n\nOptions:\nA. {option_a}\nB. {option_b}\nC. {option_c}\nD. {option_d}\n\nAnswer:"
|
18 |
+
|
19 |
+
# Tokenize and generate
|
20 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
21 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
22 |
+
|
23 |
+
with torch.no_grad():
|
24 |
+
outputs = model.generate(
|
25 |
+
**inputs,
|
26 |
+
max_new_tokens=10,
|
27 |
+
temperature=0.7,
|
28 |
+
do_sample=False,
|
29 |
+
pad_token_id=tokenizer.eos_token_id
|
30 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Get prediction
|
33 |
+
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
34 |
+
return prediction
|
35 |
|
36 |
# Create Gradio interface
|
37 |
+
demo = gr.Interface(
|
38 |
+
fn=predict,
|
39 |
+
inputs=[
|
40 |
+
gr.Textbox(label="Question", lines=3),
|
41 |
+
gr.Textbox(label="Option A"),
|
42 |
+
gr.Textbox(label="Option B"),
|
43 |
+
gr.Textbox(label="Option C"),
|
44 |
+
gr.Textbox(label="Option D")
|
45 |
+
],
|
46 |
+
outputs=gr.Textbox(label="Model's Answer", lines=5),
|
47 |
+
title="Medical MCQ Predictor",
|
48 |
+
description="Enter a medical question and its options to get the model's prediction."
|
49 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# Launch the app
|
52 |
+
if __name__ == "__main__":
|
53 |
+
demo.launch()
|
|
|
|
|
|
|
|