Nutri-Label / app.py
YourAIEngineer's picture
Update app.py
3d87d3a verified
raw
history blame
6.93 kB
import os
import re
import cv2
import time
import numpy as np
import pandas as pd
import requests
import streamlit as st
from PIL import Image
from paddleocr import PaddleOCR
# ==============================
# KONFIGURASI APLIKASI
# ==============================
st.set_page_config(
page_title="Nutri-Grade Label Detection",
page_icon="πŸ₯—",
layout="wide",
initial_sidebar_state="collapsed"
)
# API OpenRouter
OPENROUTER_API_KEY = "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"
OPENROUTER_BASE_URL = "https://openrouter.ai/api/v1"
# ==============================
# FUNGSI UTAMA
# ==============================
@st.cache_resource
def initialize_ocr():
"""Inisialisasi model PaddleOCR (CPU)."""
try:
return PaddleOCR(lang='en', use_angle_cls=True)
except Exception as e:
st.error(f"Gagal inisialisasi OCR: {e}")
return None
def parse_numeric_value(text: str) -> float:
"""Mengubah string menjadi float, hanya menyisakan angka/desimal."""
cleaned = re.sub(r"[^\d\.\-]", "", str(text))
if cleaned in ['', '.', '-']:
return 0.0
try:
return float(cleaned)
except ValueError:
return 0.0
def get_nutrition_advice(serving_size, sugar_norm, fat_norm, sugar_grade, fat_grade, final_grade):
"""Memanggil API OpenRouter untuk menghasilkan saran nutrisi singkat."""
prompt = f"""
Anda adalah ahli gizi dari Indonesia yang ramah.
- Takaran Saji: {serving_size} g/ml
- Gula (per 100): {sugar_norm:.2f} g (Grade {sugar_grade.replace('Grade ', '')})
- Lemak Jenuh (per 100): {fat_norm:.2f} g (Grade {fat_grade.replace('Grade ', '')})
- Grade Akhir: {final_grade.replace('Grade ', '')}
Berikan saran nutrisi singkat 50-80 kata, fokus pada dampak kesehatan dan tips praktis.
"""
headers = {"Authorization": f"Bearer {OPENROUTER_API_KEY}", "Content-Type": "application/json"}
payload = {
"model": "mistralai/mistral-7b-instruct:free",
"messages": [{"role": "user", "content": prompt}],
"max_tokens": 250,
"temperature": 0.7,
}
try:
r = requests.post(f"{OPENROUTER_BASE_URL}/chat/completions", headers=headers, json=payload, timeout=30)
r.raise_for_status()
return r.json()["choices"][0]["message"]["content"].strip()
except Exception as e:
return f"Error: {e}"
def get_grade_from_value(value, thresholds):
"""Menentukan grade berdasarkan ambang batas."""
if value <= thresholds["A"]:
return "Grade A"
if value <= thresholds["B"]:
return "Grade B"
if value <= thresholds["C"]:
return "Grade C"
return "Grade D"
def get_grade_color(grade):
"""Mengembalikan warna background & teks untuk tiap grade."""
return {
"Grade A": ("#2ecc71", "white"),
"Grade B": ("#f1c40f", "black"),
"Grade C": ("#e67e22", "white"),
"Grade D": ("#e74c3c", "white")
}.get(grade, ("#bdc3c7", "black"))
def reset_state():
"""Reset session_state agar analisis bisa diulang."""
for key in ['ocr_done', 'data', 'calculated', 'calc']:
st.session_state.pop(key, None)
# ==============================
# UI APLIKASI
# ==============================
# Inisialisasi OCR
ocr_engine = initialize_ocr()
if ocr_engine is None:
st.error("Model OCR tidak tersedia.")
st.stop()
st.title("πŸ₯— Nutri-Grade Detection & Grade Calculator")
st.caption("Analisis gizi produk berdasarkan standar Nutri-Grade Singapura.")
with st.expander("πŸ“‹ Petunjuk Penggunaan"):
st.markdown("""
1. Upload gambar (JPG/PNG).
2. Klik **Analisis OCR**.
3. Koreksi hasil jika perlu.
4. Klik **Hitung Grade**.
""")
# --- Step 1: Upload ---
st.header("1. Upload Gambar")
file = st.file_uploader("Pilih gambar tabel gizi", type=["jpg", "jpeg", "png"], on_change=reset_state)
if file:
arr = np.frombuffer(file.read(), np.uint8)
img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
st.image(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), width=300)
if st.button("Analisis OCR"):
with st.spinner("Mendeteksi teks..."):
res = ocr_engine.ocr(img)
texts = [ln[1][0] for ln in (res[0] if res else [])]
full_text = " ".join(texts).lower()
patterns = {
'serving': r"(takaran saj[i|a]|serving size)[^\d]*(\d+\.?\d*)",
'sugar': r"(gula|sugar)[^\d]*(\d+\.?\d*)",
'fat': r"(lemak jenuh|saturated fat)[^\d]*(\d+\.?\d*)"
}
data = {}
for key, pattern in patterns.items():
match = re.search(pattern, full_text)
if match:
data[key] = match.group(2)
st.session_state.data = data
st.session_state.ocr_done = True
st.success("OCR selesai!")
st.rerun()
# --- Step 2: Koreksi & Hitung ---
if st.session_state.get('ocr_done'):
st.header("2. Koreksi & Hitung Grade")
d = st.session_state.data
with st.form("form2"):
serving = st.text_input("Takaran Saji (g/ml)", value=d.get('serving', '100'))
sugar = st.text_input("Gula (g)", value=d.get('sugar', '0'))
fat = st.text_input("Lemak Jenuh (g)", value=d.get('fat', '0'))
ok = st.form_submit_button("Hitung Grade")
if ok:
sv = parse_numeric_value(serving)
sg = parse_numeric_value(sugar)
fg = parse_numeric_value(fat)
sugar_per100 = (sg / sv) * 100 if sv > 0 else 0
fat_per100 = (fg / sv) * 100 if sv > 0 else 0
st.session_state.calc = {'sv': sv, 'sp': sugar_per100, 'fp': fat_per100}
st.session_state.calculated = True
# --- Step 3: Tampilkan Hasil ---
if st.session_state.get('calculated'):
c = st.session_state.calc
gs = get_grade_from_value(c['sp'], {"A": 1.0, "B": 5.0, "C": 10.0})
gf = get_grade_from_value(c['fp'], {"A": 0.7, "B": 1.2, "C": 2.8})
final_grade = max(gs, gf, key=lambda x: ['Grade A', 'Grade B', 'Grade C', 'Grade D'].index(x))
st.header("3. Hasil Grading")
cols = st.columns(3)
def show(col, title, value, unit, grade):
bg, text_color = get_grade_color(grade)
col.markdown(
f"<div style='background:{bg};padding:10px;border-radius:8px;text-align:center;color:{text_color};'>"
f"<strong>{title}</strong><p>{value:.2f} {unit}</p><h4>{grade}</h4></div>",
unsafe_allow_html=True
)
show(cols[0], "Gula", c['sp'], "g/100ml", gs)
show(cols[1], "Lemak Jenuh", c['fp'], "g/100ml", gf)
show(cols[2], "Grade Akhir", 0, "", final_grade)
st.divider()
st.header("4. Saran Nutrisi AI")
with st.spinner("Meminta AI..."):
advice = get_nutrition_advice(c['sv'], c['sp'], c['fp'], gs, gf, final_grade)
st.info(advice)
# --- Footer ---
st.markdown("---")
st.markdown("<p style='text-align:center;'>Nutri-Grade App v2.1 &copy; 2024</p>", unsafe_allow_html=True)