Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,290 +1,215 @@
|
|
1 |
import os
|
2 |
import re
|
3 |
-
import time
|
4 |
-
from typing import Dict, Optional, Tuple
|
5 |
-
|
6 |
import cv2
|
|
|
7 |
import numpy as np
|
8 |
import pandas as pd
|
9 |
import requests
|
10 |
import streamlit as st
|
11 |
-
from paddleocr import PaddleOCR
|
12 |
from PIL import Image
|
|
|
13 |
|
14 |
-
#
|
15 |
-
#
|
16 |
-
#
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
OPENROUTER_BASE_URL = "https://openrouter.ai/api/v1"
|
20 |
-
GRADE_ORDER = ["Grade A", "Grade B", "Grade C", "Grade D"]
|
21 |
-
|
22 |
-
# ---------------------------
|
23 |
-
# Util / Helpers
|
24 |
-
# ---------------------------
|
25 |
-
def get_openrouter_api_key() -> Optional[str]:
|
26 |
-
"""
|
27 |
-
Ambil API key dari environment variable atau dari Streamlit secrets.
|
28 |
-
Jangan meletakkan API key langsung di kode.
|
29 |
-
"""
|
30 |
-
return os.environ.get("OPENROUTER_API_KEY") or st.secrets.get("OPENROUTER_API_KEY", None)
|
31 |
-
|
32 |
-
|
33 |
-
def safe_float_from_text(txt: str) -> float:
|
34 |
-
"""
|
35 |
-
Ambil angka dari teks (mengatasi koma desimal) dan konversi ke float.
|
36 |
-
Jika gagal, kembalikan 0.0.
|
37 |
-
"""
|
38 |
-
if txt is None:
|
39 |
-
return 0.0
|
40 |
-
s = str(txt).strip()
|
41 |
-
# ganti koma desimal jika ada
|
42 |
-
s = s.replace(",", ".")
|
43 |
-
# ambil simbol angka, titik, minus
|
44 |
-
cleaned = re.sub(r"[^\d\.\-]", "", s)
|
45 |
-
if cleaned in ("", ".", "-", "-.", ".-"):
|
46 |
-
return 0.0
|
47 |
-
try:
|
48 |
-
return float(cleaned)
|
49 |
-
except ValueError:
|
50 |
-
return 0.0
|
51 |
-
|
52 |
-
|
53 |
-
def get_grade_from_value(value: float, thresholds: Dict[str, float]) -> str:
|
54 |
-
"""
|
55 |
-
Thresholds contoh: {"A": 1.0, "B": 5.0, "C": 10.0}
|
56 |
-
kembalikan "Grade X"
|
57 |
-
"""
|
58 |
-
try:
|
59 |
-
if value <= thresholds["A"]:
|
60 |
-
return "Grade A"
|
61 |
-
if value <= thresholds["B"]:
|
62 |
-
return "Grade B"
|
63 |
-
if value <= thresholds["C"]:
|
64 |
-
return "Grade C"
|
65 |
-
return "Grade D"
|
66 |
-
except Exception:
|
67 |
-
return "Grade D"
|
68 |
-
|
69 |
-
|
70 |
-
def get_grade_color(grade: str) -> Tuple[str, str]:
|
71 |
-
"""
|
72 |
-
kembalikan (background_color, text_color)
|
73 |
-
"""
|
74 |
-
colors = {
|
75 |
-
"Grade A": ("#2ecc71", "white"),
|
76 |
-
"Grade B": ("#f1c40f", "black"),
|
77 |
-
"Grade C": ("#e67e22", "white"),
|
78 |
-
"Grade D": ("#e74c3c", "white"),
|
79 |
-
}
|
80 |
-
return colors.get(grade, ("#bdc3c7", "black"))
|
81 |
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
idx2 = GRADE_ORDER.index(g2) if g2 in GRADE_ORDER else len(GRADE_ORDER) - 1
|
87 |
-
return g1 if idx1 > idx2 else g2
|
88 |
|
89 |
-
|
90 |
-
# ---------------------------
|
91 |
-
# OCR Initialization
|
92 |
-
# ---------------------------
|
93 |
@st.cache_resource
|
94 |
-
def
|
95 |
-
"""Inisialisasi PaddleOCR (
|
96 |
try:
|
97 |
-
|
98 |
-
return PaddleOCR(lang="en", use_angle_cls=True)
|
99 |
except Exception as e:
|
100 |
-
st.error(f"Gagal inisialisasi
|
101 |
return None
|
102 |
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
Jalankan OCR pada numpy BGR image dan kembalikan teks gabungan (lowercase).
|
110 |
-
Jika error, kembalikan string kosong.
|
111 |
-
"""
|
112 |
try:
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
lines = []
|
117 |
-
for block in result:
|
118 |
-
for line in block:
|
119 |
-
if len(line) >= 2 and isinstance(line[1], (list, tuple)) is False:
|
120 |
-
# fallback
|
121 |
-
continue
|
122 |
-
text = line[1][0] if len(line) >= 2 and isinstance(line[1], (list, tuple)) else ""
|
123 |
-
lines.append(str(text))
|
124 |
-
return " ".join(lines).lower()
|
125 |
-
except Exception as e:
|
126 |
-
st.error(f"OCR gagal: {e}")
|
127 |
-
return ""
|
128 |
|
129 |
|
130 |
-
def
|
131 |
-
"""
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
}
|
141 |
-
found = {}
|
142 |
-
for key, pat in patterns.items():
|
143 |
-
m = re.search(pat, text, flags=re.IGNORECASE)
|
144 |
-
if m:
|
145 |
-
found[key] = m.group(2)
|
146 |
-
return found
|
147 |
-
|
148 |
-
|
149 |
-
# ---------------------------
|
150 |
-
# AI Advice (OpenRouter)
|
151 |
-
# ---------------------------
|
152 |
-
def get_nutrition_advice_openrouter(api_key: str, serving_size: float, sugar_norm: float, fat_norm: float,
|
153 |
-
sugar_grade: str, fat_grade: str, final_grade: str) -> str:
|
154 |
-
"""
|
155 |
-
Panggil OpenRouter Chat Completions untuk meminta saran nutrisi singkat.
|
156 |
-
Pastikan API key tersedia (diperoleh dari env / secrets).
|
157 |
"""
|
158 |
-
|
159 |
-
return "OpenRouter API key tidak ditemukan. Silakan set OPENROUTER_API_KEY di environment atau streamlit secrets."
|
160 |
-
prompt = (
|
161 |
-
"Anda adalah ahli gizi dari Indonesia yang ramah.\n"
|
162 |
-
f"- Takaran Saji: {serving_size} g/ml\n"
|
163 |
-
f"- Gula (per 100): {sugar_norm:.2f} g (Grade {sugar_grade.replace('Grade ', '')})\n"
|
164 |
-
f"- Lemak Jenuh (per 100): {fat_norm:.2f} g (Grade {fat_grade.replace('Grade ', '')})\n"
|
165 |
-
f"- Grade Akhir: {final_grade.replace('Grade ', '')}\n\n"
|
166 |
-
"Berikan saran nutrisi singkat 50-80 kata, fokus pada dampak kesehatan dan tips praktis."
|
167 |
-
)
|
168 |
payload = {
|
169 |
"model": "mistralai/mistral-7b-instruct:free",
|
170 |
"messages": [{"role": "user", "content": prompt}],
|
171 |
"max_tokens": 250,
|
172 |
"temperature": 0.7,
|
173 |
}
|
174 |
-
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
|
175 |
try:
|
176 |
-
r = requests.post(f"{OPENROUTER_BASE_URL}/chat/completions",
|
177 |
r.raise_for_status()
|
178 |
-
|
179 |
-
return data["choices"][0]["message"]["content"].strip()
|
180 |
except Exception as e:
|
181 |
-
return f"Error
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
|
184 |
-
# ---------------------------
|
185 |
-
# Streamlit App UI
|
186 |
-
# ---------------------------
|
187 |
def reset_state():
|
188 |
-
"""Reset
|
189 |
-
for
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
st.
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
)
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
else:
|
234 |
-
st.image(cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB), width=320)
|
235 |
-
|
236 |
-
# tombol OCR
|
237 |
-
if uploaded and st.button("Analisis OCR"):
|
238 |
-
with st.spinner("Mendeteksi teks..."):
|
239 |
-
text = ocr_read_image(ocr_model, img_bgr)
|
240 |
-
st.session_state.ocr_text = text
|
241 |
-
st.session_state.extracted = extract_nutri_from_text(text)
|
242 |
-
st.session_state.ocr_done = True
|
243 |
-
st.success("OCR selesai — periksa hasil ekstraksi di langkah berikutnya.")
|
244 |
-
|
245 |
-
# --- Koreksi & Hitung ---
|
246 |
-
if st.session_state.get("ocr_done"):
|
247 |
-
st.header("2. Koreksi & Hitung Grade")
|
248 |
-
extracted = st.session_state.get("extracted", {})
|
249 |
-
default_serving = extracted.get("serving", "100")
|
250 |
-
default_sugar = extracted.get("sugar", "0")
|
251 |
-
default_fat = extracted.get("fat", "0")
|
252 |
-
|
253 |
-
with st.form("calc_form"):
|
254 |
-
serving_input = st.text_input("Takaran Saji (g/ml)", value=default_serving)
|
255 |
-
sugar_input = st.text_input("Gula (g) — total per serving", value=default_sugar)
|
256 |
-
fat_input = st.text_input("Lemak Jenuh (g) — total per serving", value=default_fat)
|
257 |
-
submitted = st.form_submit_button("Hitung Grade")
|
258 |
-
|
259 |
-
if submitted:
|
260 |
-
sv = safe_float_from_text(serving_input)
|
261 |
-
sugar = safe_float_from_text(sugar_input)
|
262 |
-
fat = safe_float_from_text(fat_input)
|
263 |
-
|
264 |
-
# normalisasi ke per 100 g / ml
|
265 |
-
sugar_per100 = (sugar / sv) * 100 if sv > 0 else 0.0
|
266 |
-
fat_per100 = (fat / sv) * 100 if sv > 0 else 0.0
|
267 |
-
|
268 |
-
st.session_state.calc = {"serving": sv, "sugar": sugar, "fat": fat,
|
269 |
-
"sugar_per100": sugar_per100, "fat_per100": fat_per100}
|
270 |
-
st.session_state.calculated = True
|
271 |
-
|
272 |
-
# --- Tampilkan Hasil ---
|
273 |
-
if st.session_state.get("calculated"):
|
274 |
-
st.header("3. Hasil Grading")
|
275 |
-
c = st.session_state["calc"]
|
276 |
-
# thresholds (contoh standar)
|
277 |
-
sugar_thresholds = {"A": 1.0, "B": 5.0, "C": 10.0}
|
278 |
-
fat_thresholds = {"A": 0.7, "B": 1.2, "C": 2.8}
|
279 |
-
|
280 |
-
sugar_grade = get_grade_from_value(c["sugar_per100"], sugar_thresholds)
|
281 |
-
fat_grade = get_grade_from_value(c["fat_per100"], fat_thresholds)
|
282 |
-
final = worse_grade(sugar_grade, fat_grade)
|
283 |
-
|
284 |
-
cols = st.columns(3, gap="large")
|
285 |
-
render_grade_box(cols[0], "Gula", c["sugar_per100"], "g/100", sugar_grade)
|
286 |
-
render_grade_box(cols[1], "Lemak Jenuh", c["fat_per100"], "g/100", fat_grade)
|
287 |
-
render_grade_box(cols[2], "Grade Akhir", 0.0, "", final)
|
288 |
-
|
289 |
-
st.markdown("---")
|
290 |
-
st.header("4.
|
|
|
1 |
import os
|
2 |
import re
|
|
|
|
|
|
|
3 |
import cv2
|
4 |
+
import time
|
5 |
import numpy as np
|
6 |
import pandas as pd
|
7 |
import requests
|
8 |
import streamlit as st
|
|
|
9 |
from PIL import Image
|
10 |
+
from paddleocr import PaddleOCR
|
11 |
|
12 |
+
# ==============================
|
13 |
+
# KONFIGURASI APLIKASI
|
14 |
+
# ==============================
|
15 |
+
st.set_page_config(
|
16 |
+
page_title="Nutri-Grade Label Detection",
|
17 |
+
page_icon="🥗",
|
18 |
+
layout="wide",
|
19 |
+
initial_sidebar_state="collapsed"
|
20 |
+
)
|
21 |
+
|
22 |
+
# API OpenRouter
|
23 |
+
OPENROUTER_API_KEY = "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"
|
24 |
OPENROUTER_BASE_URL = "https://openrouter.ai/api/v1"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
|
27 |
+
# ==============================
|
28 |
+
# FUNGSI UTAMA
|
29 |
+
# ==============================
|
|
|
|
|
30 |
|
|
|
|
|
|
|
|
|
31 |
@st.cache_resource
|
32 |
+
def initialize_ocr():
|
33 |
+
"""Inisialisasi model PaddleOCR (CPU)."""
|
34 |
try:
|
35 |
+
return PaddleOCR(lang='en', use_angle_cls=True)
|
|
|
36 |
except Exception as e:
|
37 |
+
st.error(f"Gagal inisialisasi OCR: {e}")
|
38 |
return None
|
39 |
|
40 |
|
41 |
+
def parse_numeric_value(text: str) -> float:
|
42 |
+
"""Mengubah string menjadi float, hanya menyisakan angka/desimal."""
|
43 |
+
cleaned = re.sub(r"[^\d\.\-]", "", str(text))
|
44 |
+
if cleaned in ['', '.', '-']:
|
45 |
+
return 0.0
|
|
|
|
|
|
|
46 |
try:
|
47 |
+
return float(cleaned)
|
48 |
+
except ValueError:
|
49 |
+
return 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
|
52 |
+
def get_nutrition_advice(serving_size, sugar_norm, fat_norm, sugar_grade, fat_grade, final_grade):
|
53 |
+
"""Memanggil API OpenRouter untuk menghasilkan saran nutrisi singkat."""
|
54 |
+
prompt = f"""
|
55 |
+
Anda adalah ahli gizi dari Indonesia yang ramah.
|
56 |
+
- Takaran Saji: {serving_size} g/ml
|
57 |
+
- Gula (per 100): {sugar_norm:.2f} g (Grade {sugar_grade.replace('Grade ', '')})
|
58 |
+
- Lemak Jenuh (per 100): {fat_norm:.2f} g (Grade {fat_grade.replace('Grade ', '')})
|
59 |
+
- Grade Akhir: {final_grade.replace('Grade ', '')}
|
60 |
+
|
61 |
+
Berikan saran nutrisi singkat 50-80 kata, fokus pada dampak kesehatan dan tips praktis.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
"""
|
63 |
+
headers = {"Authorization": f"Bearer {OPENROUTER_API_KEY}", "Content-Type": "application/json"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
payload = {
|
65 |
"model": "mistralai/mistral-7b-instruct:free",
|
66 |
"messages": [{"role": "user", "content": prompt}],
|
67 |
"max_tokens": 250,
|
68 |
"temperature": 0.7,
|
69 |
}
|
|
|
70 |
try:
|
71 |
+
r = requests.post(f"{OPENROUTER_BASE_URL}/chat/completions", headers=headers, json=payload, timeout=30)
|
72 |
r.raise_for_status()
|
73 |
+
return r.json()["choices"][0]["message"]["content"].strip()
|
|
|
74 |
except Exception as e:
|
75 |
+
return f"Error: {e}"
|
76 |
+
|
77 |
+
|
78 |
+
def get_grade_from_value(value, thresholds):
|
79 |
+
"""Menentukan grade berdasarkan ambang batas."""
|
80 |
+
if value <= thresholds["A"]:
|
81 |
+
return "Grade A"
|
82 |
+
if value <= thresholds["B"]:
|
83 |
+
return "Grade B"
|
84 |
+
if value <= thresholds["C"]:
|
85 |
+
return "Grade C"
|
86 |
+
return "Grade D"
|
87 |
+
|
88 |
+
|
89 |
+
def get_grade_color(grade):
|
90 |
+
"""Mengembalikan warna background & teks untuk tiap grade."""
|
91 |
+
return {
|
92 |
+
"Grade A": ("#2ecc71", "white"),
|
93 |
+
"Grade B": ("#f1c40f", "black"),
|
94 |
+
"Grade C": ("#e67e22", "white"),
|
95 |
+
"Grade D": ("#e74c3c", "white")
|
96 |
+
}.get(grade, ("#bdc3c7", "black"))
|
97 |
|
98 |
|
|
|
|
|
|
|
99 |
def reset_state():
|
100 |
+
"""Reset session_state agar analisis bisa diulang."""
|
101 |
+
for key in ['ocr_done', 'data', 'calculated', 'calc']:
|
102 |
+
st.session_state.pop(key, None)
|
103 |
+
|
104 |
+
|
105 |
+
# ==============================
|
106 |
+
# UI APLIKASI
|
107 |
+
# ==============================
|
108 |
+
|
109 |
+
# Inisialisasi OCR
|
110 |
+
ocr_engine = initialize_ocr()
|
111 |
+
if ocr_engine is None:
|
112 |
+
st.error("Model OCR tidak tersedia.")
|
113 |
+
st.stop()
|
114 |
+
|
115 |
+
st.title("🥗 Nutri-Grade Detection & Grade Calculator")
|
116 |
+
st.caption("Analisis gizi produk berdasarkan standar Nutri-Grade Singapura.")
|
117 |
+
|
118 |
+
with st.expander("📋 Petunjuk Penggunaan"):
|
119 |
+
st.markdown("""
|
120 |
+
1. Upload gambar (JPG/PNG).
|
121 |
+
2. Klik **Analisis OCR**.
|
122 |
+
3. Koreksi hasil jika perlu.
|
123 |
+
4. Klik **Hitung Grade**.
|
124 |
+
""")
|
125 |
+
|
126 |
+
# --- Step 1: Upload ---
|
127 |
+
st.header("1. Upload Gambar")
|
128 |
+
file = st.file_uploader("Pilih gambar tabel gizi", type=["jpg", "jpeg", "png"], on_change=reset_state)
|
129 |
+
|
130 |
+
if file:
|
131 |
+
arr = np.frombuffer(file.read(), np.uint8)
|
132 |
+
img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
|
133 |
+
st.image(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), width=300)
|
134 |
+
|
135 |
+
if st.button("Analisis OCR"):
|
136 |
+
with st.spinner("Mendeteksi teks..."):
|
137 |
+
res = ocr_engine.ocr(img)
|
138 |
+
|
139 |
+
texts = [ln[1][0] for ln in (res[0] if res else [])]
|
140 |
+
full_text = " ".join(texts).lower()
|
141 |
+
|
142 |
+
patterns = {
|
143 |
+
'serving': r"(takaran saj[i|a]|serving size)[^\d]*(\d+\.?\d*)",
|
144 |
+
'sugar': r"(gula|sugar)[^\d]*(\d+\.?\d*)",
|
145 |
+
'fat': r"(lemak jenuh|saturated fat)[^\d]*(\d+\.?\d*)"
|
146 |
+
}
|
147 |
+
|
148 |
+
data = {}
|
149 |
+
for key, pattern in patterns.items():
|
150 |
+
match = re.search(pattern, full_text)
|
151 |
+
if match:
|
152 |
+
data[key] = match.group(2)
|
153 |
+
|
154 |
+
st.session_state.data = data
|
155 |
+
st.session_state.ocr_done = True
|
156 |
+
st.success("OCR selesai!")
|
157 |
+
st.rerun()
|
158 |
+
|
159 |
+
# --- Step 2: Koreksi & Hitung ---
|
160 |
+
if st.session_state.get('ocr_done'):
|
161 |
+
st.header("2. Koreksi & Hitung Grade")
|
162 |
+
d = st.session_state.data
|
163 |
+
|
164 |
+
with st.form("form2"):
|
165 |
+
serving = st.text_input("Takaran Saji (g/ml)", value=d.get('serving', '100'))
|
166 |
+
sugar = st.text_input("Gula (g)", value=d.get('sugar', '0'))
|
167 |
+
fat = st.text_input("Lemak Jenuh (g)", value=d.get('fat', '0'))
|
168 |
+
ok = st.form_submit_button("Hitung Grade")
|
169 |
+
|
170 |
+
if ok:
|
171 |
+
sv = parse_numeric_value(serving)
|
172 |
+
sg = parse_numeric_value(sugar)
|
173 |
+
fg = parse_numeric_value(fat)
|
174 |
+
|
175 |
+
sugar_per100 = (sg / sv) * 100 if sv > 0 else 0
|
176 |
+
fat_per100 = (fg / sv) * 100 if sv > 0 else 0
|
177 |
+
|
178 |
+
st.session_state.calc = {'sv': sv, 'sp': sugar_per100, 'fp': fat_per100}
|
179 |
+
st.session_state.calculated = True
|
180 |
+
|
181 |
+
# --- Step 3: Tampilkan Hasil ---
|
182 |
+
if st.session_state.get('calculated'):
|
183 |
+
c = st.session_state.calc
|
184 |
+
|
185 |
+
gs = get_grade_from_value(c['sp'], {"A": 1.0, "B": 5.0, "C": 10.0})
|
186 |
+
gf = get_grade_from_value(c['fp'], {"A": 0.7, "B": 1.2, "C": 2.8})
|
187 |
+
|
188 |
+
final_grade = max(gs, gf, key=lambda x: ['Grade A', 'Grade B', 'Grade C', 'Grade D'].index(x))
|
189 |
+
|
190 |
+
st.header("3. Hasil Grading")
|
191 |
+
cols = st.columns(3)
|
192 |
+
|
193 |
+
def show(col, title, value, unit, grade):
|
194 |
+
bg, text_color = get_grade_color(grade)
|
195 |
+
col.markdown(
|
196 |
+
f"<div style='background:{bg};padding:10px;border-radius:8px;text-align:center;color:{text_color};'>"
|
197 |
+
f"<strong>{title}</strong><p>{value:.2f} {unit}</p><h4>{grade}</h4></div>",
|
198 |
+
unsafe_allow_html=True
|
199 |
)
|
200 |
|
201 |
+
show(cols[0], "Gula", c['sp'], "g/100ml", gs)
|
202 |
+
show(cols[1], "Lemak Jenuh", c['fp'], "g/100ml", gf)
|
203 |
+
show(cols[2], "Grade Akhir", 0, "", final_grade)
|
204 |
+
|
205 |
+
st.divider()
|
206 |
+
st.header("4. Saran Nutrisi AI")
|
207 |
+
|
208 |
+
with st.spinner("Meminta AI..."):
|
209 |
+
advice = get_nutrition_advice(c['sv'], c['sp'], c['fp'], gs, gf, final_grade)
|
210 |
+
|
211 |
+
st.info(advice)
|
212 |
+
|
213 |
+
# --- Footer ---
|
214 |
+
st.markdown("---")
|
215 |
+
st.markdown("<p style='text-align:center;'>Nutri-Grade App v2.1 © 2024</p>", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|