Spaces:
Build error
Build error
File size: 6,926 Bytes
178cc73 7037b42 3d87d3a 7037b42 178cc73 fe32dc1 3d87d3a 178cc73 3d87d3a 178cc73 08ce19d 178cc73 3d87d3a 178cc73 7cfd356 3d87d3a ba8ca57 3d87d3a 178cc73 3d87d3a 7cfd356 3d87d3a 178cc73 3d87d3a 178cc73 3d87d3a 178cc73 3d87d3a 178cc73 3d87d3a 178cc73 3d87d3a 178cc73 3d87d3a 0bbf223 ba8ca57 fe32dc1 3d87d3a fe32dc1 178cc73 3d87d3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import os
import re
import cv2
import time
import numpy as np
import pandas as pd
import requests
import streamlit as st
from PIL import Image
from paddleocr import PaddleOCR
# ==============================
# KONFIGURASI APLIKASI
# ==============================
st.set_page_config(
page_title="Nutri-Grade Label Detection",
page_icon="π₯",
layout="wide",
initial_sidebar_state="collapsed"
)
# API OpenRouter
OPENROUTER_API_KEY = "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"
OPENROUTER_BASE_URL = "https://openrouter.ai/api/v1"
# ==============================
# FUNGSI UTAMA
# ==============================
@st.cache_resource
def initialize_ocr():
"""Inisialisasi model PaddleOCR (CPU)."""
try:
return PaddleOCR(lang='en', use_angle_cls=True)
except Exception as e:
st.error(f"Gagal inisialisasi OCR: {e}")
return None
def parse_numeric_value(text: str) -> float:
"""Mengubah string menjadi float, hanya menyisakan angka/desimal."""
cleaned = re.sub(r"[^\d\.\-]", "", str(text))
if cleaned in ['', '.', '-']:
return 0.0
try:
return float(cleaned)
except ValueError:
return 0.0
def get_nutrition_advice(serving_size, sugar_norm, fat_norm, sugar_grade, fat_grade, final_grade):
"""Memanggil API OpenRouter untuk menghasilkan saran nutrisi singkat."""
prompt = f"""
Anda adalah ahli gizi dari Indonesia yang ramah.
- Takaran Saji: {serving_size} g/ml
- Gula (per 100): {sugar_norm:.2f} g (Grade {sugar_grade.replace('Grade ', '')})
- Lemak Jenuh (per 100): {fat_norm:.2f} g (Grade {fat_grade.replace('Grade ', '')})
- Grade Akhir: {final_grade.replace('Grade ', '')}
Berikan saran nutrisi singkat 50-80 kata, fokus pada dampak kesehatan dan tips praktis.
"""
headers = {"Authorization": f"Bearer {OPENROUTER_API_KEY}", "Content-Type": "application/json"}
payload = {
"model": "mistralai/mistral-7b-instruct:free",
"messages": [{"role": "user", "content": prompt}],
"max_tokens": 250,
"temperature": 0.7,
}
try:
r = requests.post(f"{OPENROUTER_BASE_URL}/chat/completions", headers=headers, json=payload, timeout=30)
r.raise_for_status()
return r.json()["choices"][0]["message"]["content"].strip()
except Exception as e:
return f"Error: {e}"
def get_grade_from_value(value, thresholds):
"""Menentukan grade berdasarkan ambang batas."""
if value <= thresholds["A"]:
return "Grade A"
if value <= thresholds["B"]:
return "Grade B"
if value <= thresholds["C"]:
return "Grade C"
return "Grade D"
def get_grade_color(grade):
"""Mengembalikan warna background & teks untuk tiap grade."""
return {
"Grade A": ("#2ecc71", "white"),
"Grade B": ("#f1c40f", "black"),
"Grade C": ("#e67e22", "white"),
"Grade D": ("#e74c3c", "white")
}.get(grade, ("#bdc3c7", "black"))
def reset_state():
"""Reset session_state agar analisis bisa diulang."""
for key in ['ocr_done', 'data', 'calculated', 'calc']:
st.session_state.pop(key, None)
# ==============================
# UI APLIKASI
# ==============================
# Inisialisasi OCR
ocr_engine = initialize_ocr()
if ocr_engine is None:
st.error("Model OCR tidak tersedia.")
st.stop()
st.title("π₯ Nutri-Grade Detection & Grade Calculator")
st.caption("Analisis gizi produk berdasarkan standar Nutri-Grade Singapura.")
with st.expander("π Petunjuk Penggunaan"):
st.markdown("""
1. Upload gambar (JPG/PNG).
2. Klik **Analisis OCR**.
3. Koreksi hasil jika perlu.
4. Klik **Hitung Grade**.
""")
# --- Step 1: Upload ---
st.header("1. Upload Gambar")
file = st.file_uploader("Pilih gambar tabel gizi", type=["jpg", "jpeg", "png"], on_change=reset_state)
if file:
arr = np.frombuffer(file.read(), np.uint8)
img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
st.image(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), width=300)
if st.button("Analisis OCR"):
with st.spinner("Mendeteksi teks..."):
res = ocr_engine.ocr(img)
texts = [ln[1][0] for ln in (res[0] if res else [])]
full_text = " ".join(texts).lower()
patterns = {
'serving': r"(takaran saj[i|a]|serving size)[^\d]*(\d+\.?\d*)",
'sugar': r"(gula|sugar)[^\d]*(\d+\.?\d*)",
'fat': r"(lemak jenuh|saturated fat)[^\d]*(\d+\.?\d*)"
}
data = {}
for key, pattern in patterns.items():
match = re.search(pattern, full_text)
if match:
data[key] = match.group(2)
st.session_state.data = data
st.session_state.ocr_done = True
st.success("OCR selesai!")
st.rerun()
# --- Step 2: Koreksi & Hitung ---
if st.session_state.get('ocr_done'):
st.header("2. Koreksi & Hitung Grade")
d = st.session_state.data
with st.form("form2"):
serving = st.text_input("Takaran Saji (g/ml)", value=d.get('serving', '100'))
sugar = st.text_input("Gula (g)", value=d.get('sugar', '0'))
fat = st.text_input("Lemak Jenuh (g)", value=d.get('fat', '0'))
ok = st.form_submit_button("Hitung Grade")
if ok:
sv = parse_numeric_value(serving)
sg = parse_numeric_value(sugar)
fg = parse_numeric_value(fat)
sugar_per100 = (sg / sv) * 100 if sv > 0 else 0
fat_per100 = (fg / sv) * 100 if sv > 0 else 0
st.session_state.calc = {'sv': sv, 'sp': sugar_per100, 'fp': fat_per100}
st.session_state.calculated = True
# --- Step 3: Tampilkan Hasil ---
if st.session_state.get('calculated'):
c = st.session_state.calc
gs = get_grade_from_value(c['sp'], {"A": 1.0, "B": 5.0, "C": 10.0})
gf = get_grade_from_value(c['fp'], {"A": 0.7, "B": 1.2, "C": 2.8})
final_grade = max(gs, gf, key=lambda x: ['Grade A', 'Grade B', 'Grade C', 'Grade D'].index(x))
st.header("3. Hasil Grading")
cols = st.columns(3)
def show(col, title, value, unit, grade):
bg, text_color = get_grade_color(grade)
col.markdown(
f"<div style='background:{bg};padding:10px;border-radius:8px;text-align:center;color:{text_color};'>"
f"<strong>{title}</strong><p>{value:.2f} {unit}</p><h4>{grade}</h4></div>",
unsafe_allow_html=True
)
show(cols[0], "Gula", c['sp'], "g/100ml", gs)
show(cols[1], "Lemak Jenuh", c['fp'], "g/100ml", gf)
show(cols[2], "Grade Akhir", 0, "", final_grade)
st.divider()
st.header("4. Saran Nutrisi AI")
with st.spinner("Meminta AI..."):
advice = get_nutrition_advice(c['sv'], c['sp'], c['fp'], gs, gf, final_grade)
st.info(advice)
# --- Footer ---
st.markdown("---")
st.markdown("<p style='text-align:center;'>Nutri-Grade App v2.1 © 2024</p>", unsafe_allow_html=True)
|