File size: 6,926 Bytes
178cc73
 
7037b42
3d87d3a
7037b42
178cc73
 
 
fe32dc1
3d87d3a
178cc73
3d87d3a
 
 
 
 
 
 
 
 
 
 
 
178cc73
08ce19d
178cc73
3d87d3a
 
 
178cc73
7cfd356
3d87d3a
 
ba8ca57
3d87d3a
178cc73
3d87d3a
7cfd356
 
 
3d87d3a
 
 
 
 
178cc73
3d87d3a
 
 
178cc73
 
3d87d3a
 
 
 
 
 
 
 
 
 
178cc73
3d87d3a
178cc73
 
 
 
 
 
 
3d87d3a
178cc73
3d87d3a
178cc73
3d87d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bbf223
ba8ca57
fe32dc1
3d87d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe32dc1
178cc73
3d87d3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import re
import cv2
import time
import numpy as np
import pandas as pd
import requests
import streamlit as st
from PIL import Image
from paddleocr import PaddleOCR

# ==============================
# KONFIGURASI APLIKASI
# ==============================
st.set_page_config(
    page_title="Nutri-Grade Label Detection",
    page_icon="πŸ₯—",
    layout="wide",
    initial_sidebar_state="collapsed"
)

# API OpenRouter
OPENROUTER_API_KEY = "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"
OPENROUTER_BASE_URL = "https://openrouter.ai/api/v1"


# ==============================
# FUNGSI UTAMA
# ==============================

@st.cache_resource
def initialize_ocr():
    """Inisialisasi model PaddleOCR (CPU)."""
    try:
        return PaddleOCR(lang='en', use_angle_cls=True)
    except Exception as e:
        st.error(f"Gagal inisialisasi OCR: {e}")
        return None


def parse_numeric_value(text: str) -> float:
    """Mengubah string menjadi float, hanya menyisakan angka/desimal."""
    cleaned = re.sub(r"[^\d\.\-]", "", str(text))
    if cleaned in ['', '.', '-']:
        return 0.0
    try:
        return float(cleaned)
    except ValueError:
        return 0.0


def get_nutrition_advice(serving_size, sugar_norm, fat_norm, sugar_grade, fat_grade, final_grade):
    """Memanggil API OpenRouter untuk menghasilkan saran nutrisi singkat."""
    prompt = f"""
    Anda adalah ahli gizi dari Indonesia yang ramah.
    - Takaran Saji: {serving_size} g/ml
    - Gula (per 100): {sugar_norm:.2f} g (Grade {sugar_grade.replace('Grade ', '')})
    - Lemak Jenuh (per 100): {fat_norm:.2f} g (Grade {fat_grade.replace('Grade ', '')})
    - Grade Akhir: {final_grade.replace('Grade ', '')}
    
    Berikan saran nutrisi singkat 50-80 kata, fokus pada dampak kesehatan dan tips praktis.
    """
    headers = {"Authorization": f"Bearer {OPENROUTER_API_KEY}", "Content-Type": "application/json"}
    payload = {
        "model": "mistralai/mistral-7b-instruct:free",
        "messages": [{"role": "user", "content": prompt}],
        "max_tokens": 250,
        "temperature": 0.7,
    }
    try:
        r = requests.post(f"{OPENROUTER_BASE_URL}/chat/completions", headers=headers, json=payload, timeout=30)
        r.raise_for_status()
        return r.json()["choices"][0]["message"]["content"].strip()
    except Exception as e:
        return f"Error: {e}"


def get_grade_from_value(value, thresholds):
    """Menentukan grade berdasarkan ambang batas."""
    if value <= thresholds["A"]:
        return "Grade A"
    if value <= thresholds["B"]:
        return "Grade B"
    if value <= thresholds["C"]:
        return "Grade C"
    return "Grade D"


def get_grade_color(grade):
    """Mengembalikan warna background & teks untuk tiap grade."""
    return {
        "Grade A": ("#2ecc71", "white"),
        "Grade B": ("#f1c40f", "black"),
        "Grade C": ("#e67e22", "white"),
        "Grade D": ("#e74c3c", "white")
    }.get(grade, ("#bdc3c7", "black"))


def reset_state():
    """Reset session_state agar analisis bisa diulang."""
    for key in ['ocr_done', 'data', 'calculated', 'calc']:
        st.session_state.pop(key, None)


# ==============================
# UI APLIKASI
# ==============================

# Inisialisasi OCR
ocr_engine = initialize_ocr()
if ocr_engine is None:
    st.error("Model OCR tidak tersedia.")
    st.stop()

st.title("πŸ₯— Nutri-Grade Detection & Grade Calculator")
st.caption("Analisis gizi produk berdasarkan standar Nutri-Grade Singapura.")

with st.expander("πŸ“‹ Petunjuk Penggunaan"):
    st.markdown("""
    1. Upload gambar (JPG/PNG).
    2. Klik **Analisis OCR**.
    3. Koreksi hasil jika perlu.
    4. Klik **Hitung Grade**.
    """)

# --- Step 1: Upload ---
st.header("1. Upload Gambar")
file = st.file_uploader("Pilih gambar tabel gizi", type=["jpg", "jpeg", "png"], on_change=reset_state)

if file:
    arr = np.frombuffer(file.read(), np.uint8)
    img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
    st.image(cv2.cvtColor(img, cv2.COLOR_BGR2RGB), width=300)

    if st.button("Analisis OCR"):
        with st.spinner("Mendeteksi teks..."):
            res = ocr_engine.ocr(img)

        texts = [ln[1][0] for ln in (res[0] if res else [])]
        full_text = " ".join(texts).lower()

        patterns = {
            'serving': r"(takaran saj[i|a]|serving size)[^\d]*(\d+\.?\d*)",
            'sugar': r"(gula|sugar)[^\d]*(\d+\.?\d*)",
            'fat': r"(lemak jenuh|saturated fat)[^\d]*(\d+\.?\d*)"
        }

        data = {}
        for key, pattern in patterns.items():
            match = re.search(pattern, full_text)
            if match:
                data[key] = match.group(2)

        st.session_state.data = data
        st.session_state.ocr_done = True
        st.success("OCR selesai!")
        st.rerun()

# --- Step 2: Koreksi & Hitung ---
if st.session_state.get('ocr_done'):
    st.header("2. Koreksi & Hitung Grade")
    d = st.session_state.data

    with st.form("form2"):
        serving = st.text_input("Takaran Saji (g/ml)", value=d.get('serving', '100'))
        sugar = st.text_input("Gula (g)", value=d.get('sugar', '0'))
        fat = st.text_input("Lemak Jenuh (g)", value=d.get('fat', '0'))
        ok = st.form_submit_button("Hitung Grade")

    if ok:
        sv = parse_numeric_value(serving)
        sg = parse_numeric_value(sugar)
        fg = parse_numeric_value(fat)

        sugar_per100 = (sg / sv) * 100 if sv > 0 else 0
        fat_per100 = (fg / sv) * 100 if sv > 0 else 0

        st.session_state.calc = {'sv': sv, 'sp': sugar_per100, 'fp': fat_per100}
        st.session_state.calculated = True

# --- Step 3: Tampilkan Hasil ---
if st.session_state.get('calculated'):
    c = st.session_state.calc

    gs = get_grade_from_value(c['sp'], {"A": 1.0, "B": 5.0, "C": 10.0})
    gf = get_grade_from_value(c['fp'], {"A": 0.7, "B": 1.2, "C": 2.8})

    final_grade = max(gs, gf, key=lambda x: ['Grade A', 'Grade B', 'Grade C', 'Grade D'].index(x))

    st.header("3. Hasil Grading")
    cols = st.columns(3)

    def show(col, title, value, unit, grade):
        bg, text_color = get_grade_color(grade)
        col.markdown(
            f"<div style='background:{bg};padding:10px;border-radius:8px;text-align:center;color:{text_color};'>"
            f"<strong>{title}</strong><p>{value:.2f} {unit}</p><h4>{grade}</h4></div>",
            unsafe_allow_html=True
        )

    show(cols[0], "Gula", c['sp'], "g/100ml", gs)
    show(cols[1], "Lemak Jenuh", c['fp'], "g/100ml", gf)
    show(cols[2], "Grade Akhir", 0, "", final_grade)

    st.divider()
    st.header("4. Saran Nutrisi AI")

    with st.spinner("Meminta AI..."):
        advice = get_nutrition_advice(c['sv'], c['sp'], c['fp'], gs, gf, final_grade)

    st.info(advice)

# --- Footer ---
st.markdown("---")
st.markdown("<p style='text-align:center;'>Nutri-Grade App v2.1 &copy; 2024</p>", unsafe_allow_html=True)