|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
|
|
|
|
MODEL_NAME = "yandex/YandexGPT-5-Lite-8B-pretrain" |
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, legacy=False) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME, |
|
device_map="cuda" if torch.cuda.is_available() else "cpu", |
|
torch_dtype="auto", |
|
) |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
full_prompt = f"{system_message}\n\n" |
|
for user_msg, assistant_msg in history: |
|
if user_msg: |
|
full_prompt += f"User: {user_msg}\n" |
|
if assistant_msg: |
|
full_prompt += f"Assistant: {assistant_msg}\n" |
|
full_prompt += f"User: {message}\nAssistant:" |
|
|
|
|
|
inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
do_sample=True, |
|
pad_token_id=tokenizer.eos_token_id, |
|
stream=True |
|
) |
|
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
response = response[len(full_prompt):] |
|
yield response |
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docsx/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|