import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # Инициализация модели и токенизатора MODEL_NAME = "yandex/YandexGPT-5-Lite-8B-pretrain" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, legacy=False) model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, device_map="cuda" if torch.cuda.is_available() else "cpu", torch_dtype="auto", ) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Формируем контекст из истории full_prompt = f"{system_message}\n\n" for user_msg, assistant_msg in history: if user_msg: full_prompt += f"User: {user_msg}\n" if assistant_msg: full_prompt += f"Assistant: {assistant_msg}\n" full_prompt += f"User: {message}\nAssistant:" # Токенизация и генерация inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, pad_token_id=tokenizer.eos_token_id, stream=True ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Убираем начальный промпт из ответа response = response[len(full_prompt):] yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docsx/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()