Vt5005 commited on
Commit
c985a89
·
1 Parent(s): 95c31db
Files changed (1) hide show
  1. app.py +33 -23
app.py CHANGED
@@ -1,11 +1,19 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
  """
5
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
  """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -15,33 +23,35 @@ def respond(
15
  temperature,
16
  top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
 
 
 
 
41
 
42
 
43
  """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
  """
46
  demo = gr.ChatInterface(
47
  respond,
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
 
5
  """
6
  For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
7
  """
 
8
 
9
+ # Инициализация модели и токенизатора
10
+ MODEL_NAME = "yandex/YandexGPT-5-Lite-8B-pretrain"
11
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, legacy=False)
12
+ model = AutoModelForCausalLM.from_pretrained(
13
+ MODEL_NAME,
14
+ device_map="cuda" if torch.cuda.is_available() else "cpu",
15
+ torch_dtype="auto",
16
+ )
17
 
18
  def respond(
19
  message,
 
23
  temperature,
24
  top_p,
25
  ):
26
+ # Формируем контекст из истории
27
+ full_prompt = f"{system_message}\n\n"
28
+ for user_msg, assistant_msg in history:
29
+ if user_msg:
30
+ full_prompt += f"User: {user_msg}\n"
31
+ if assistant_msg:
32
+ full_prompt += f"Assistant: {assistant_msg}\n"
33
+ full_prompt += f"User: {message}\nAssistant:"
 
34
 
35
+ # Токенизация и генерация
36
+ inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
37
+ outputs = model.generate(
38
+ **inputs,
39
+ max_new_tokens=max_tokens,
 
40
  temperature=temperature,
41
  top_p=top_p,
42
+ do_sample=True,
43
+ pad_token_id=tokenizer.eos_token_id,
44
+ stream=True
45
+ )
46
+
47
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
48
+ # Убираем начальный промпт из ответа
49
+ response = response[len(full_prompt):]
50
+ yield response
51
 
52
 
53
  """
54
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docsx/chatinterface
55
  """
56
  demo = gr.ChatInterface(
57
  respond,