Spaces:
Sleeping
Sleeping
File size: 3,632 Bytes
6e82314 4f711b0 0673a12 2cbdbe8 0673a12 7fcb72d 4bf4a35 4f711b0 3f4ce15 2cbdbe8 9f79fe4 2454010 9f79fe4 3f4ce15 6c4916c 9f79fe4 7fcb72d 4bf4a35 0673a12 4f711b0 2cbdbe8 a539a2e 9f79fe4 4f711b0 2cbdbe8 6c4916c 9f79fe4 6c4916c a539a2e 2cbdbe8 a539a2e 2cbdbe8 4f711b0 2cbdbe8 9f79fe4 4f711b0 a539a2e 2cbdbe8 4f711b0 a539a2e 4f711b0 2cbdbe8 9f79fe4 7fcb72d 9f79fe4 1cf6170 7fcb72d 1cf6170 a539a2e 1cf6170 7fcb72d 1cf6170 3f4ce15 99c05e6 9f79fe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
import os
import time
import warnings
import re
warnings.filterwarnings("ignore", category=UserWarning, module="torch._utils")
from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch
import gradio as gr
import psutil
# Print system resources for debugging
def print_system_resources():
cpu_percent = psutil.cpu_percent(interval=1)
memory = psutil.virtual_memory()
print(f"CPU usage: {cpu_percent}%")
print(f"Memory usage: {memory.percent}% ({memory.used/1e9:.2f}/{memory.total/1e9:.2f} GB)")
# Load model and tokenizer
model_id = "NlpHUST/gpt2-vietnamese"
try:
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
model = GPT2LMHeadModel.from_pretrained(model_id)
except Exception as e:
print(f"Error loading model: {e}")
raise e
# Set pad_token_id to eos_token_id if not set
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
model.config.pad_token_id = tokenizer.eos_token_id
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
# Print device and memory info for debugging
print(f"Device: {device}")
print(f"Memory allocated: {torch.cuda.memory_allocated(device)/1e9:.2f} GB" if torch.cuda.is_available() else "CPU only")
print_system_resources()
def clean_text(text):
"""Clean generated text by removing non-alphabetic characters and extra spaces."""
text = re.sub(r'[^\w\s.,!?]', '', text) # Remove non-alphabetic characters
text = re.sub(r'\s+', ' ', text).strip() # Normalize spaces
return text
def generate_text(prompt, max_length=50):
try:
start_time = time.time()
print_system_resources() # Print resources before generation
# Encode input with attention mask
inputs = tokenizer(
prompt,
return_tensors="pt",
padding=True,
truncation=True,
max_length=max_length
).to(device)
# Generate text
outputs = model.generate(
input_ids=inputs["input_ids"],
attention_mask=inputs["attention_mask"],
max_new_tokens=20, # Reduce to speed up
min_length=10, # Ensure minimum output length
do_sample=False, # Use greedy decoding for consistency
num_beams=1, # Disable beam search for speed
no_repeat_ngram_size=2,
pad_token_id=tokenizer.pad_token_id,
early_stopping=True
)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"Raw output: {generated_text}") # Debug raw output
cleaned_text = clean_text(generated_text)
elapsed_time = time.time() - start_time
print_system_resources() # Print resources after generation
print(f"Generation time: {elapsed_time:.2f} seconds")
return cleaned_text
except Exception as e:
return f"Error generating text: {e}"
# Gradio interface
demo = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(
label="Nhập văn bản đầu vào",
placeholder="Viết gì đó bằng tiếng Việt...",
value="Hôm nay là một ngày đẹp trời" # Set default text
),
gr.Slider(20, 100, value=50, step=10, label="Độ dài tối đa")
],
outputs="text",
title="Sinh văn bản tiếng Việt",
description="Dùng mô hình GPT-2 Vietnamese từ NlpHUST để sinh văn bản tiếng Việt.",
allow_flagging="never"
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860) |