File size: 3,632 Bytes
6e82314
4f711b0
0673a12
2cbdbe8
0673a12
 
7fcb72d
 
4bf4a35
4f711b0
3f4ce15
2cbdbe8
 
 
 
 
 
 
9f79fe4
2454010
9f79fe4
 
 
 
 
 
3f4ce15
6c4916c
 
 
 
 
9f79fe4
7fcb72d
 
 
4bf4a35
0673a12
 
 
4f711b0
 
2cbdbe8
 
 
 
 
 
a539a2e
9f79fe4
4f711b0
2cbdbe8
6c4916c
 
 
 
 
 
 
 
 
 
9f79fe4
6c4916c
 
a539a2e
2cbdbe8
 
a539a2e
2cbdbe8
4f711b0
2cbdbe8
9f79fe4
4f711b0
a539a2e
2cbdbe8
4f711b0
a539a2e
4f711b0
2cbdbe8
9f79fe4
 
7fcb72d
9f79fe4
1cf6170
7fcb72d
1cf6170
a539a2e
 
 
 
 
 
1cf6170
 
7fcb72d
 
 
1cf6170
3f4ce15
99c05e6
9f79fe4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import os
import time
import warnings
import re
warnings.filterwarnings("ignore", category=UserWarning, module="torch._utils")

from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch
import gradio as gr
import psutil

# Print system resources for debugging
def print_system_resources():
    cpu_percent = psutil.cpu_percent(interval=1)
    memory = psutil.virtual_memory()
    print(f"CPU usage: {cpu_percent}%")
    print(f"Memory usage: {memory.percent}% ({memory.used/1e9:.2f}/{memory.total/1e9:.2f} GB)")

# Load model and tokenizer
model_id = "NlpHUST/gpt2-vietnamese"
try:
    tokenizer = GPT2Tokenizer.from_pretrained(model_id)
    model = GPT2LMHeadModel.from_pretrained(model_id)
except Exception as e:
    print(f"Error loading model: {e}")
    raise e

# Set pad_token_id to eos_token_id if not set
if tokenizer.pad_token_id is None:
    tokenizer.pad_token_id = tokenizer.eos_token_id
    model.config.pad_token_id = tokenizer.eos_token_id

# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()

# Print device and memory info for debugging
print(f"Device: {device}")
print(f"Memory allocated: {torch.cuda.memory_allocated(device)/1e9:.2f} GB" if torch.cuda.is_available() else "CPU only")
print_system_resources()

def clean_text(text):
    """Clean generated text by removing non-alphabetic characters and extra spaces."""
    text = re.sub(r'[^\w\s.,!?]', '', text)  # Remove non-alphabetic characters
    text = re.sub(r'\s+', ' ', text).strip()  # Normalize spaces
    return text

def generate_text(prompt, max_length=50):
    try:
        start_time = time.time()
        print_system_resources()  # Print resources before generation
        # Encode input with attention mask
        inputs = tokenizer(
            prompt,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=max_length
        ).to(device)
        
        # Generate text
        outputs = model.generate(
            input_ids=inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
            max_new_tokens=20,  # Reduce to speed up
            min_length=10,  # Ensure minimum output length
            do_sample=False,  # Use greedy decoding for consistency
            num_beams=1,  # Disable beam search for speed
            no_repeat_ngram_size=2,
            pad_token_id=tokenizer.pad_token_id,
            early_stopping=True
        )
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        print(f"Raw output: {generated_text}")  # Debug raw output
        cleaned_text = clean_text(generated_text)
        elapsed_time = time.time() - start_time
        print_system_resources()  # Print resources after generation
        print(f"Generation time: {elapsed_time:.2f} seconds")
        return cleaned_text
    except Exception as e:
        return f"Error generating text: {e}"

# Gradio interface
demo = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(
            label="Nhập văn bản đầu vào",
            placeholder="Viết gì đó bằng tiếng Việt...",
            value="Hôm nay là một ngày đẹp trời"  # Set default text
        ),
        gr.Slider(20, 100, value=50, step=10, label="Độ dài tối đa")
    ],
    outputs="text",
    title="Sinh văn bản tiếng Việt",
    description="Dùng mô hình GPT-2 Vietnamese từ NlpHUST để sinh văn bản tiếng Việt.",
    allow_flagging="never"
)

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)