Spaces:
Running
Running
fix runtime error
Browse files- Dockerfile +10 -7
- app.py +22 -22
- requirements.txt +2 -3
Dockerfile
CHANGED
@@ -1,17 +1,20 @@
|
|
1 |
FROM python:3.10-slim
|
2 |
|
|
|
|
|
|
|
|
|
|
|
3 |
WORKDIR /app
|
4 |
|
|
|
5 |
COPY requirements.txt .
|
6 |
-
|
7 |
RUN pip install --no-cache-dir -r requirements.txt
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
RUN mkdir -p /app/hf_cache && chmod -R 777 /app/hf_cache
|
13 |
|
14 |
-
|
15 |
-
ENV HF_HOME=/app/hf_cache
|
16 |
|
17 |
CMD ["python", "app.py"]
|
|
|
1 |
FROM python:3.10-slim
|
2 |
|
3 |
+
# Set env vars to avoid permission issues and suppress deprecation warnings
|
4 |
+
ENV TRANSFORMERS_CACHE=/app/cache \
|
5 |
+
HF_HOME=/app/cache \
|
6 |
+
PYTHONUNBUFFERED=1
|
7 |
+
|
8 |
WORKDIR /app
|
9 |
|
10 |
+
# Install dependencies
|
11 |
COPY requirements.txt .
|
|
|
12 |
RUN pip install --no-cache-dir -r requirements.txt
|
13 |
|
14 |
+
# Copy source code
|
15 |
+
COPY app.py .
|
16 |
+
RUN mkdir -p /app/cache /app/flagged
|
|
|
17 |
|
18 |
+
EXPOSE 7860
|
|
|
19 |
|
20 |
CMD ["python", "app.py"]
|
app.py
CHANGED
@@ -1,36 +1,36 @@
|
|
1 |
-
import
|
|
|
2 |
import gradio as gr
|
3 |
-
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
4 |
|
5 |
model_id = "NlpHUST/gpt2-vietnamese"
|
6 |
|
|
|
7 |
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
|
8 |
model = GPT2LMHeadModel.from_pretrained(model_id)
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
max_length=max_length,
|
15 |
-
do_sample=True,
|
16 |
-
temperature=temperature,
|
17 |
-
top_p=0.95
|
18 |
-
)
|
19 |
-
return tokenizer.decode(output[0], skip_special_tokens=True)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
demo = gr.Interface(
|
22 |
-
fn=
|
23 |
inputs=[
|
24 |
-
gr.Textbox(label="Nhập
|
25 |
-
gr.Slider(
|
26 |
-
gr.Slider(0.
|
27 |
],
|
28 |
outputs="text",
|
29 |
-
title="Sinh văn bản tiếng Việt
|
30 |
-
description=
|
31 |
-
|
32 |
-
),
|
33 |
-
allow_flagging="never" # 👈 dòng quan trọng
|
34 |
)
|
35 |
|
36 |
-
demo.launch()
|
|
|
1 |
+
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
2 |
+
import torch
|
3 |
import gradio as gr
|
|
|
4 |
|
5 |
model_id = "NlpHUST/gpt2-vietnamese"
|
6 |
|
7 |
+
# Load model and tokenizer
|
8 |
tokenizer = GPT2Tokenizer.from_pretrained(model_id)
|
9 |
model = GPT2LMHeadModel.from_pretrained(model_id)
|
10 |
|
11 |
+
# Set to eval mode and use GPU if available
|
12 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
+
model.to(device)
|
14 |
+
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Inference function
|
17 |
+
def generate_text(prompt, max_length=100, temperature=1.0):
|
18 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt").to(device)
|
19 |
+
outputs = model.generate(inputs, max_length=max_length, temperature=temperature, do_sample=True)
|
20 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
|
22 |
+
# Gradio interface
|
23 |
demo = gr.Interface(
|
24 |
+
fn=generate_text,
|
25 |
inputs=[
|
26 |
+
gr.Textbox(label="Nhập văn bản đầu vào", placeholder="Viết gì đó bằng tiếng Việt..."),
|
27 |
+
gr.Slider(20, 300, value=100, step=10, label="Độ dài tối đa"),
|
28 |
+
gr.Slider(0.5, 1.5, value=1.0, step=0.1, label="Nhiệt độ (Temperature)")
|
29 |
],
|
30 |
outputs="text",
|
31 |
+
title="Sinh văn bản tiếng Việt",
|
32 |
+
description="Dùng mô hình GPT-2 Vietnamese từ NlpHUST để sinh văn bản tiếng Việt.",
|
33 |
+
allow_flagging="never"
|
|
|
|
|
34 |
)
|
35 |
|
36 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
requirements.txt
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
torch==2.1.2
|
3 |
-
|
4 |
-
gradio==4.44.1
|
|
|
1 |
+
transformers==4.40.0
|
2 |
torch==2.1.2
|
3 |
+
gradio==4.27.0
|
|