Spaces:
Running
Running
fix runtime error
Browse files- Dockerfile +17 -12
- app.py +56 -18
- requirements.txt +4 -3
Dockerfile
CHANGED
@@ -1,22 +1,27 @@
|
|
|
|
1 |
FROM python:3.10-slim
|
2 |
|
3 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
RUN apt-get update && apt-get install -y \
|
5 |
git \
|
6 |
&& rm -rf /var/lib/apt/lists/*
|
7 |
|
8 |
-
#
|
9 |
-
WORKDIR /app
|
10 |
-
|
11 |
-
# Copy mã nguồn và cài đặt requirements
|
12 |
COPY requirements.txt .
|
13 |
-
RUN pip install --no-cache-dir
|
|
|
14 |
|
15 |
-
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
ENV TRANSFORMERS_CACHE=/tmp/hf-cache
|
20 |
|
21 |
-
#
|
22 |
-
CMD ["
|
|
|
1 |
+
# Use lightweight Python image
|
2 |
FROM python:3.10-slim
|
3 |
|
4 |
+
# Prevent interactive prompts during package install
|
5 |
+
ENV DEBIAN_FRONTEND=noninteractive
|
6 |
+
|
7 |
+
# Set working directory
|
8 |
+
WORKDIR /app
|
9 |
+
|
10 |
+
# Install basic dependencies
|
11 |
RUN apt-get update && apt-get install -y \
|
12 |
git \
|
13 |
&& rm -rf /var/lib/apt/lists/*
|
14 |
|
15 |
+
# Copy requirements and install Python packages
|
|
|
|
|
|
|
16 |
COPY requirements.txt .
|
17 |
+
RUN pip install --no-cache-dir --upgrade pip \
|
18 |
+
&& pip install --no-cache-dir -r requirements.txt
|
19 |
|
20 |
+
# Copy application code
|
21 |
+
COPY app.py .
|
22 |
|
23 |
+
# Expose Gradio default port
|
24 |
+
EXPOSE 7860
|
|
|
25 |
|
26 |
+
# Run the app
|
27 |
+
CMD ["python", "app.py"]
|
app.py
CHANGED
@@ -1,26 +1,64 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
-
from pydantic import BaseModel
|
4 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
5 |
import torch
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
os.makedirs("/tmp/hf-cache", exist_ok=True)
|
9 |
-
os.environ["TRANSFORMERS_CACHE"] = "/tmp/hf-cache"
|
10 |
|
11 |
-
#
|
12 |
-
model_name = "VietAI/
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
-
model =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
app = FastAPI()
|
17 |
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
input_ids = tokenizer.encode(data.input, return_tensors="pt", max_length=512, truncation=True)
|
24 |
-
output_ids = model.generate(input_ids, max_length=128, num_beams=4, early_stopping=True)
|
25 |
-
output = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
26 |
-
return {"output": output}
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
3 |
import torch
|
4 |
+
from fastapi import FastAPI, Request
|
5 |
+
import uvicorn
|
6 |
|
7 |
+
from threading import Thread
|
|
|
|
|
8 |
|
9 |
+
# -------- Load model --------
|
10 |
+
model_name = "VietAI/gpt-neo-1.3B-vietnamese-news"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
13 |
+
model.eval()
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
model.to(device)
|
16 |
+
|
17 |
+
# -------- Inference function --------
|
18 |
+
def generate_text(prompt, max_tokens=100, temperature=0.9, top_p=0.95):
|
19 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
20 |
+
outputs = model.generate(
|
21 |
+
**inputs,
|
22 |
+
max_new_tokens=max_tokens,
|
23 |
+
do_sample=True,
|
24 |
+
temperature=temperature,
|
25 |
+
top_p=top_p,
|
26 |
+
pad_token_id=tokenizer.eos_token_id,
|
27 |
+
)
|
28 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
29 |
|
30 |
+
# -------- Gradio UI --------
|
31 |
+
def launch_gradio():
|
32 |
+
with gr.Blocks() as demo:
|
33 |
+
gr.Markdown("## 🇻🇳 VietAI GPT-Neo 1.3B - Sinh văn bản tiếng Việt")
|
34 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Nhập đoạn mở đầu văn bản...")
|
35 |
+
max_tokens = gr.Slider(10, 200, value=100, label="Số tokens sinh ra")
|
36 |
+
temperature = gr.Slider(0.1, 1.5, value=0.9, label="Temperature")
|
37 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, label="Top-p sampling")
|
38 |
+
output = gr.Textbox(label="Kết quả", lines=10)
|
39 |
+
btn = gr.Button("Sinh văn bản")
|
40 |
+
btn.click(fn=generate_text, inputs=[prompt, max_tokens, temperature, top_p], outputs=output)
|
41 |
+
|
42 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|
43 |
+
|
44 |
+
# -------- FastAPI for REST API --------
|
45 |
app = FastAPI()
|
46 |
|
47 |
+
@app.post("/generate")
|
48 |
+
async def generate(request: Request):
|
49 |
+
body = await request.json()
|
50 |
+
prompt = body.get("prompt", "")
|
51 |
+
max_tokens = body.get("max_tokens", 100)
|
52 |
+
temperature = body.get("temperature", 0.9)
|
53 |
+
top_p = body.get("top_p", 0.95)
|
54 |
+
output = generate_text(prompt, max_tokens, temperature, top_p)
|
55 |
+
return {"response": output}
|
56 |
+
|
57 |
+
# -------- Start Gradio in background --------
|
58 |
+
if __name__ == "__main__":
|
59 |
+
# Run Gradio in another thread
|
60 |
+
thread = Thread(target=launch_gradio)
|
61 |
+
thread.start()
|
62 |
|
63 |
+
# Start FastAPI
|
64 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
-
|
|
|
|
|
2 |
uvicorn
|
3 |
-
|
4 |
-
torch>=1.13.1
|
|
|
1 |
+
transformers>=4.40.0
|
2 |
+
torch
|
3 |
+
gradio>=4.26.0
|
4 |
uvicorn
|
5 |
+
fastapi
|
|