File size: 3,106 Bytes
6e82314
4f711b0
0673a12
 
 
7fcb72d
 
4bf4a35
4f711b0
3f4ce15
9f79fe4
2454010
9f79fe4
 
 
 
 
 
3f4ce15
6c4916c
 
 
 
 
9f79fe4
7fcb72d
 
 
4bf4a35
0673a12
 
 
 
4f711b0
 
 
 
 
 
 
 
 
 
9f79fe4
4f711b0
6c4916c
 
 
 
 
 
 
 
 
 
9f79fe4
6c4916c
 
4f711b0
9f79fe4
 
4f711b0
 
 
 
9f79fe4
4f711b0
 
 
 
9f79fe4
 
7fcb72d
9f79fe4
1cf6170
7fcb72d
1cf6170
7fcb72d
4f711b0
7fcb72d
1cf6170
 
7fcb72d
 
 
1cf6170
3f4ce15
99c05e6
9f79fe4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
import time
import warnings
warnings.filterwarnings("ignore", category=UserWarning, module="torch._utils")

from transformers import GPT2LMHeadModel, GPT2Tokenizer
import torch
import gradio as gr
import psutil

# Load model and tokenizer
model_id = "NlpHUST/gpt2-vietnamese"
try:
    tokenizer = GPT2Tokenizer.from_pretrained(model_id)
    model = GPT2LMHeadModel.from_pretrained(model_id)
except Exception as e:
    print(f"Error loading model: {e}")
    raise e

# Set pad_token_id to eos_token_id if not set
if tokenizer.pad_token_id is None:
    tokenizer.pad_token_id = tokenizer.eos_token_id
    model.config.pad_token_id = tokenizer.eos_token_id

# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()

# Print device and memory info for debugging
print(f"Device: {device}")
print(f"Memory allocated: {torch.cuda.memory_allocated(device)/1e9:.2f} GB" if torch.cuda.is_available() else "CPU only")

def print_system_resources():
    cpu_percent = psutil.cpu_percent(interval=1)
    memory = psutil.virtual_memory()
    print(f"CPU usage: {cpu_percent}%")
    print(f"Memory usage: {memory.percent}% ({memory.used/1e9:.2f}/{memory.total/1e9:.2f} GB)")

# Call before generation
print_system_resources()

def generate_text(prompt, max_length=50, temperature=1.0):
    try:
        start_time = time.time()
        # Encode input with attention mask
        inputs = tokenizer(
            prompt,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=max_length
        ).to(device)
        
        # Generate text
        outputs = model.generate(
            input_ids=inputs["input_ids"],
            attention_mask=inputs["attention_mask"],
            max_new_tokens=30,  # Limit new tokens to reduce computation
            temperature=temperature,
            do_sample=True,
            num_beams=3,  # Use beam search for faster generation
            no_repeat_ngram_size=2,  # Prevent repetitive phrases
            pad_token_id=tokenizer.pad_token_id,
            early_stopping=True  # Stop when generation is complete
        )
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        elapsed_time = time.time() - start_time
        print(f"Generation time: {elapsed_time:.2f} seconds")
        return generated_text
    except Exception as e:
        return f"Error generating text: {e}"

# Gradio interface
demo = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(label="Nhập văn bản đầu vào", placeholder="Viết gì đó bằng tiếng Việt..."),
        gr.Slider(20, 100, value=50, step=10, label="Độ dài tối đa"),
        gr.Slider(0.5, 1.5, value=1.0, step=0.1, label="Nhiệt độ (Temperature)")
    ],
    outputs="text",
    title="Sinh văn bản tiếng Việt",
    description="Dùng mô hình GPT-2 Vietnamese từ NlpHUST để sinh văn bản tiếng Việt.",
    allow_flagging="never"
)

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860)