Spaces:
Running
Running
File size: 17,260 Bytes
ec19476 370fc5b ec19476 e178784 ec19476 370fc5b ec19476 370fc5b ec19476 a5a3887 ec19476 a5a3887 ec19476 e178784 ec19476 7a4895e ec19476 a5a3887 ec19476 e178784 ec19476 370fc5b ec19476 370fc5b ec19476 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
import argparse
import json
import yaml
import os
from typing import List, Dict
# Import visualization function from the new module
from visualizer import visualize_pipeline_parallelism
try:
from dash_visualizer import visualize_pipeline_parallelism_dash, save_pipeline_visualization_plotly
DASH_AVAILABLE = True
except ImportError:
DASH_AVAILABLE = False
def create_1f1b_schedule(
num_stages: int,
num_batches: int,
forward_times: List[float],
backward_times: List[float],
p2p_time: float = 0.0,
) -> Dict[int, List[Dict]]:
"""
Create a 1F1B (One-Forward-One-Backward) schedule for pipeline parallelism.
This implementation takes a data-centric approach:
1. First determine the operation sequence for each pipeline stage (which microbatch to process when)
2. Then calculate timing based on dependencies between operations
The 1F1B pattern has three phases:
- Warmup: Forward passes for first num_stages microbatches
- Steady state: Alternating between forward and backward passes
- Cooldown: Backward passes for remaining microbatches
Returns:
A dictionary mapping device IDs to lists of tasks.
Each task is a dictionary with keys:
- 'type': 'forward' or 'backward'
- 'batch': batch number
- 'start_time': start time of the task
- 'duration': duration of the task
"""
# Initialize empty schedule
schedule = {stage: [] for stage in range(num_stages)}
# Step 1: Determine operation sequence for each stage
# This will generate the sequence of operations (forward/backward on which microbatch)
# that each stage should perform, without timing information yet
operation_sequence = determine_1f1b_operation_sequence(num_stages, num_batches)
# Step 2: Convert operation sequence to schedule with timing
# Taking into account dependencies between operations
schedule = calculate_operation_timing(
operation_sequence, num_stages, forward_times, backward_times, p2p_time
)
return schedule
def determine_1f1b_operation_sequence(
num_stages: int, num_batches: int
) -> Dict[int, List[Dict]]:
"""
Determine the sequence of operations (forward/backward) for each stage in 1F1B scheduling.
Args:
num_stages: Number of pipeline stages
num_batches: Number of micro-batches
Returns:
Dictionary mapping stage ID to a list of operations in sequence.
Each operation is a dict with keys 'type' ('forward' or 'backward') and 'batch'.
"""
operation_sequence = {i: [] for i in range(num_stages)}
for current_stage in range(num_stages):
warmup_batches = num_stages - current_stage
for j in range(1, warmup_batches + 1):
operation_sequence[current_stage].append({"type": "forward", "batch": j})
steady_batches = num_batches - warmup_batches
for j in range(warmup_batches + 1, warmup_batches + steady_batches + 1):
operation_sequence[current_stage].append(
{"type": "backward", "batch": j - warmup_batches}
)
operation_sequence[current_stage].append({"type": "forward", "batch": j})
for j in range(warmup_batches):
operation_sequence[current_stage].append(
{"type": "backward", "batch": j + steady_batches + 1}
)
return operation_sequence
def calculate_operation_timing(
operation_sequence: Dict[int, List[Dict]],
num_stages: int,
forward_times: List[float],
backward_times: List[float],
p2p_time: float = 0.0,
) -> Dict[int, List[Dict]]:
"""
Recursively calculate the specific timing of each operation in a 1F1B schedule.
When encountering an operation that depends on a previous operation that hasn't been calculated yet,
it will recursively calculate the timing of those operations.
Args:
operation_sequence: Operation sequence for each stage
num_stages: Number of pipeline stages
forward_times: Forward propagation time for each stage
backward_times: Backward propagation time for each stage
p2p_time: Point-to-point communication time between stages
Returns:
Complete schedule with timing information, each operation includes start_time and duration
"""
# Initialize schedule with timing information
schedule = {i: [] for i in range(num_stages)}
# For recording already computed operation end times
# Format: {(stage, batch, op_type): (start_time, end_time)}
computed_ops = {}
# For recording the end time of the last operation for each stage
stage_last_end_time = [0.0] * num_stages
# Helper function: recursively calculate the time for an operation
def compute_op_time(stage, batch, op_type):
# Check if this operation has already been calculated
key = (stage, batch, op_type)
if key in computed_ops:
return computed_ops[key]
# Get operation duration
duration = (
forward_times[stage] if op_type == "forward" else backward_times[stage]
)
# Determine start time (dependent on other operations)
# 1. Consider sequential dependencies on the stage (must wait for previous operation to complete)
start_time = stage_last_end_time[stage]
# 2. Forward pass also depends on forward pass of previous stage (if not the first stage)
if op_type == "forward" and stage > 0:
# Recursively calculate the time for the forward pass of the previous stage (if not calculated yet)
prev_stage_key = (stage - 1, batch, "forward")
if prev_stage_key not in computed_ops:
prev_start, prev_end = compute_op_time(stage - 1, batch, "forward")
else:
_, prev_end = computed_ops[prev_stage_key]
# Update start time
start_time = max(start_time, prev_end + p2p_time)
# 3. Backward pass depends on:
elif op_type == "backward":
# a. Forward pass of the same stage
same_stage_forward_key = (stage, batch, "forward")
if same_stage_forward_key not in computed_ops:
_, forward_end = compute_op_time(stage, batch, "forward")
else:
_, forward_end = computed_ops[same_stage_forward_key]
start_time = max(start_time, forward_end)
# b. Backward pass of the next stage (if not the last stage)
if stage < num_stages - 1:
next_stage_backward_key = (stage + 1, batch, "backward")
if next_stage_backward_key not in computed_ops:
_, next_backward_end = compute_op_time(stage + 1, batch, "backward")
else:
_, next_backward_end = computed_ops[next_stage_backward_key]
start_time = max(start_time, next_backward_end + p2p_time)
# Calculate end time
end_time = start_time + duration
# Store calculation results
computed_ops[key] = (start_time, end_time)
# Update the end time of the last operation for this stage
stage_last_end_time[stage] = end_time
return start_time, end_time
# Calculate time for each operation in the operation_sequence
for i in range(len(operation_sequence[0])):
for stage in range(num_stages):
batch = operation_sequence[stage][i]["batch"]
op_type = operation_sequence[stage][i]["type"]
# Recursively calculate the time for this operation
start_time, _ = compute_op_time(stage, batch, op_type)
# Fill in scheduling information
op_with_timing = operation_sequence[stage][i].copy()
op_with_timing["start_time"] = start_time
op_with_timing["duration"] = (
forward_times[stage] if op_type == "forward" else backward_times[stage]
)
schedule[stage].append(op_with_timing)
return schedule
def get_schedule_info(schedule: Dict[int, List[Dict]]):
num_stages = len(schedule)
max_time = 0
for device in schedule:
for task in schedule[device]:
end_time = task["start_time"] + task["duration"]
if end_time > max_time:
max_time = end_time
total_execution_time = max_time * num_stages
total_computation_time = 0
device_computation_times = {}
for device in schedule:
device_computation_time = 0
for task in schedule[device]:
device_computation_time += task["duration"]
device_computation_times[device] = device_computation_time
total_computation_time += device_computation_time
bubble_rate = (
total_execution_time - total_computation_time
) / total_computation_time
return {
"bubble_rate": f"{bubble_rate*100:.2f}%",
"execution_time": f"{max_time / 1000:.2f} s",
}
def read_config_file(config_path):
"""
Read configuration from a JSON or YAML file.
Args:
config_path: Path to the config file (JSON or YAML)
Returns:
Dictionary containing configuration parameters
"""
if not os.path.exists(config_path):
raise FileNotFoundError(f"Config file not found: {config_path}")
file_ext = os.path.splitext(config_path)[1].lower()
try:
with open(config_path, "r") as f:
if file_ext == ".json":
config = json.load(f)
elif file_ext in (".yaml", ".yml"):
config = yaml.safe_load(f)
else:
raise ValueError(
f"Unsupported config file format: {file_ext}. Use .json, .yaml, or .yml"
)
return config
except Exception as e:
raise ValueError(f"Error reading config file: {str(e)}")
def parse_args():
"""
Parse command-line arguments for the pipeline parallelism tool.
Returns:
Parsed arguments namespace
"""
parser = argparse.ArgumentParser(
description="Pipeline Parallelism Scheduler and Visualizer",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
# Config file option
parser.add_argument(
"--config", "-c", type=str, help="Path to config file (JSON or YAML)"
)
# Main parameters
parser.add_argument(
"--num-stages",
"-s",
type=int,
default=0,
help="Number of pipeline stages (devices)",
)
parser.add_argument(
"--num-batches", "-b", type=int, default=0, help="Number of micro-batches"
)
# Forward and backward times
parser.add_argument(
"--forward-times",
"-f",
type=float,
nargs="+",
help="Time for forward pass at each stage (space-separated list)",
)
parser.add_argument(
"--backward-times",
"-bw",
type=float,
nargs="+",
help="Time for backward pass at each stage (space-separated list)",
)
# Output options
parser.add_argument(
"--output",
"-o",
type=str,
default="pipeline_1f1b.png",
help="Output file path for visualization",
)
parser.add_argument(
"--no-visualization", action="store_true", help="Skip visualization generation"
)
parser.add_argument(
"--p2p-time",
type=float,
default=0.0,
help="Time for point-to-point communication between stages",
)
parser.add_argument("--visualizer", choices=["matplotlib", "dash", "dash-interactive"],
default="matplotlib", help="Visualization library to use")
return parser.parse_args()
def example_usage():
"""Example usage of the visualization function and testing the scheduling algorithms."""
# Example parameters
num_stages = 4 # Number of pipeline stages (devices)
num_batches = 10 # Number of micro-batches
# Example times for forward and backward passes for each stage
forward_times = [1.0, 1.0, 1.0, 1.0] # Time for forward pass at each stage
backward_times = [2.0, 2.0, 2.0, 2.0] # Time for backward pass at each stage
# Create 1F1B schedule
schedule = create_1f1b_schedule(
num_stages=num_stages,
num_batches=num_batches,
forward_times=forward_times,
backward_times=backward_times,
)
# Create visualization with the schedule
visualize_pipeline_parallelism(
schedule=schedule, schedule_type="1f1b", output_file="pipeline_1f1b.png"
)
# Analyze the schedule
schedule_info = get_schedule_info(schedule)
print(schedule_info)
def main():
"""
Main function that parses arguments and runs the pipeline parallelism analysis.
"""
args = parse_args()
# Initialize with default values
num_stages = 4
num_batches = 10
forward_times = None
backward_times = None
output_file = "pipeline_1f1b.png"
p2p_time = 0.0
# Command line arguments override config file
num_stages = args.num_stages
num_batches = args.num_batches
forward_times = args.forward_times
backward_times = args.backward_times
output_file = args.output
p2p_time = args.p2p_time
# Read from config file if provided
if args.config:
try:
print(f"Reading configuration from {args.config}")
config = read_config_file(args.config)
# Update parameters from config
num_stages = config.get("num_stages", num_stages)
num_batches = config.get("num_batches", num_batches)
forward_times = config.get("forward_times")
backward_times = config.get("backward_times")
output_file = config.get("output_file", output_file)
p2p_time = config.get("p2p_time", 0.0)
except Exception as e:
print(f"Error reading config file: {str(e)}")
print("Falling back to command line arguments or defaults")
# Validate inputs
if forward_times is None:
forward_times = [1.0] * num_stages
elif len(forward_times) != num_stages:
print(
f"Warning: forward_times length ({len(forward_times)}) doesn't match num_stages ({num_stages})"
)
if len(forward_times) < num_stages:
# Extend with repeats of the last value
forward_times = list(forward_times) + [forward_times[-1]] * (
num_stages - len(forward_times)
)
else:
# Truncate
forward_times = forward_times[:num_stages]
print(f"Adjusted forward_times: {forward_times}")
if backward_times is None:
backward_times = [2.0] * num_stages
elif len(backward_times) != num_stages:
print(
f"Warning: backward_times length ({len(backward_times)}) doesn't match num_stages ({num_stages})"
)
if len(backward_times) < num_stages:
# Extend with repeats of the last value
backward_times = list(backward_times) + [backward_times[-1]] * (
num_stages - len(backward_times)
)
else:
# Truncate
backward_times = backward_times[:num_stages]
print(f"Adjusted backward_times: {backward_times}")
print(f"Running with parameters:")
print(f" num_stages: {num_stages}")
print(f" num_batches: {num_batches}")
print(f" forward_times: {forward_times}")
print(f" backward_times: {backward_times}")
print(f" output_file: {output_file}")
# Create 1F1B schedule
schedule = create_1f1b_schedule(
num_stages=num_stages,
num_batches=num_batches,
forward_times=forward_times,
backward_times=backward_times,
p2p_time=p2p_time,
)
# Create visualization unless --no-visualization is specified
if not args.no_visualization:
if args.visualizer == "matplotlib" or not DASH_AVAILABLE:
if not DASH_AVAILABLE and args.visualizer in ["dash", "dash-interactive"]:
print("Warning: Dash not available. Falling back to matplotlib.")
visualize_pipeline_parallelism(
schedule=schedule, schedule_type="1f1b", output_file=output_file
)
elif args.visualizer == "dash":
# Get output file name without extension to use the appropriate extension
output_base = os.path.splitext(output_file)[0]
output_dash = f"{output_base}_plotly.png"
save_pipeline_visualization_plotly(
schedule=schedule, schedule_type="1f1b", output_file=output_dash
)
elif args.visualizer == "dash-interactive":
print("Using Dash interactive visualization")
visualize_pipeline_parallelism_dash(
schedule=schedule, schedule_type="1f1b", port=8050, debug=False
)
# Analyze the schedule
schedule_info = get_schedule_info(schedule)
print(schedule_info)
return {
"schedule": schedule,
"schedule_info": schedule_info,
"num_stages": num_stages,
"num_batches": num_batches,
}
if __name__ == "__main__":
main()
|