Spaces:
Running
Running
Add dash backend visualizer.
Browse files- README-dash-visualizer.md +91 -0
- dash_visualizer.py +310 -0
- pipeline.py +27 -3
- requirements-dash.txt +5 -0
README-dash-visualizer.md
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Pipeline Parallelism Dash Visualizer
|
2 |
+
|
3 |
+
This is an interactive Dash-based visualizer for pipeline parallelism scheduling, complementing the existing Matplotlib-based visualization.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- **Static image generation** similar to the Matplotlib version
|
8 |
+
- **Interactive web-based visualization** with Dash
|
9 |
+
- **Download functionality** to save the visualization as PNG
|
10 |
+
- **Progress indication** during figure creation and image generation
|
11 |
+
- **Compatible API** with the existing visualizer
|
12 |
+
|
13 |
+
## Installation
|
14 |
+
|
15 |
+
Install the required dependencies:
|
16 |
+
|
17 |
+
```bash
|
18 |
+
pip install -r requirements-dash.txt
|
19 |
+
```
|
20 |
+
|
21 |
+
## Usage
|
22 |
+
|
23 |
+
### From Python
|
24 |
+
|
25 |
+
```python
|
26 |
+
from pipeline import create_1f1b_schedule
|
27 |
+
from dash_visualizer import visualize_pipeline_parallelism_dash, save_pipeline_visualization_plotly
|
28 |
+
|
29 |
+
# Create a schedule
|
30 |
+
schedule = create_1f1b_schedule(
|
31 |
+
num_stages=4,
|
32 |
+
num_batches=8,
|
33 |
+
forward_times=[1.0, 1.0, 1.0, 1.0],
|
34 |
+
backward_times=[2.0, 2.0, 2.0, 2.0],
|
35 |
+
)
|
36 |
+
|
37 |
+
# Generate a static image
|
38 |
+
save_pipeline_visualization_plotly(
|
39 |
+
schedule=schedule,
|
40 |
+
schedule_type="1f1b",
|
41 |
+
output_file="pipeline_plotly.png"
|
42 |
+
)
|
43 |
+
|
44 |
+
# OR launch an interactive Dash app
|
45 |
+
visualize_pipeline_parallelism_dash(
|
46 |
+
schedule=schedule,
|
47 |
+
schedule_type="1f1b",
|
48 |
+
port=8050,
|
49 |
+
debug=False
|
50 |
+
)
|
51 |
+
```
|
52 |
+
|
53 |
+
### Using the Command Line
|
54 |
+
|
55 |
+
You can use the updated command line interface:
|
56 |
+
|
57 |
+
```bash
|
58 |
+
# Generate a static image with Dash/Plotly
|
59 |
+
python pipeline.py --visualizer dash --output-file pipeline_viz.png
|
60 |
+
|
61 |
+
# Launch an interactive Dash app
|
62 |
+
python pipeline.py --visualizer dash-interactive
|
63 |
+
|
64 |
+
# Use the original Matplotlib visualizer
|
65 |
+
python pipeline.py --visualizer matplotlib
|
66 |
+
```
|
67 |
+
|
68 |
+
You can also use the dash_visualizer.py script directly for testing:
|
69 |
+
|
70 |
+
```bash
|
71 |
+
# Generate a static image
|
72 |
+
python dash_visualizer.py --output test_viz.png
|
73 |
+
|
74 |
+
# Launch an interactive app
|
75 |
+
python dash_visualizer.py --interactive
|
76 |
+
```
|
77 |
+
|
78 |
+
## Differences from Matplotlib Visualizer
|
79 |
+
|
80 |
+
The Dash-based visualizer provides all the same visual elements as the Matplotlib version:
|
81 |
+
- Color-coded rectangles for forward, backward, and optimizer operations
|
82 |
+
- Batch numbers displayed inside each rectangle
|
83 |
+
- Device labels on the y-axis
|
84 |
+
- Clear legend
|
85 |
+
|
86 |
+
Additional features:
|
87 |
+
- Interactive web interface
|
88 |
+
- Hovering over elements to see details
|
89 |
+
- Download button to save the visualization
|
90 |
+
- Progress bars for tracking visualization creation
|
91 |
+
- Responsive layout that works well on different screen sizes
|
dash_visualizer.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import dash
|
2 |
+
from dash import dcc, html
|
3 |
+
from dash.dependencies import Input, Output, State
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
import numpy as np
|
6 |
+
from typing import List, Dict, Literal
|
7 |
+
from tqdm import tqdm
|
8 |
+
import time
|
9 |
+
|
10 |
+
|
11 |
+
def create_pipeline_figure(schedule: Dict[int, List[Dict]], max_time=None, show_progress=True):
|
12 |
+
"""
|
13 |
+
Create a Plotly figure for pipeline parallelism scheduling.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
schedule: Dictionary mapping device IDs to lists of tasks.
|
17 |
+
Each task is a dictionary with keys:
|
18 |
+
- 'type': 'forward', 'backward', or 'optimizer'
|
19 |
+
- 'batch': batch number
|
20 |
+
- 'start_time': start time of the task
|
21 |
+
- 'duration': duration of the task
|
22 |
+
max_time: Optional maximum time to display
|
23 |
+
show_progress: Whether to show a progress bar
|
24 |
+
"""
|
25 |
+
# Colors for task types
|
26 |
+
forward_color = "royalblue"
|
27 |
+
backward_color = "sandybrown"
|
28 |
+
optimizer_color = "#FFEFCF"
|
29 |
+
empty_color = "whitesmoke"
|
30 |
+
|
31 |
+
# Find the number of stages (devices)
|
32 |
+
num_stages = len(schedule)
|
33 |
+
|
34 |
+
# Find the maximum time in the schedule if not provided
|
35 |
+
if max_time is None:
|
36 |
+
max_time = 0
|
37 |
+
for device in schedule:
|
38 |
+
for task in schedule[device]:
|
39 |
+
end_time = task["start_time"] + task["duration"]
|
40 |
+
if end_time > max_time:
|
41 |
+
max_time = end_time
|
42 |
+
|
43 |
+
# Create a figure
|
44 |
+
fig = go.Figure()
|
45 |
+
|
46 |
+
# Initialize progress tracking
|
47 |
+
total_tasks = sum(len(tasks) for tasks in schedule.values())
|
48 |
+
tasks_processed = 0
|
49 |
+
|
50 |
+
if show_progress:
|
51 |
+
progress_bar = tqdm(total=total_tasks + num_stages + 3, desc="Creating visualization")
|
52 |
+
|
53 |
+
# Add background for empty cells
|
54 |
+
for device_idx in range(num_stages):
|
55 |
+
device_idx_reversed = num_stages - device_idx - 1 # Reverse for plotting
|
56 |
+
fig.add_trace(go.Scatter(
|
57 |
+
x=[0, max_time],
|
58 |
+
y=[device_idx_reversed, device_idx_reversed],
|
59 |
+
mode='lines',
|
60 |
+
line=dict(color='lightgray', width=0.5),
|
61 |
+
showlegend=False,
|
62 |
+
hoverinfo='none'
|
63 |
+
))
|
64 |
+
if show_progress:
|
65 |
+
progress_bar.update(1)
|
66 |
+
|
67 |
+
# Add rectangles for each task
|
68 |
+
for device_idx, device in enumerate(schedule):
|
69 |
+
device_idx_reversed = num_stages - device_idx - 1
|
70 |
+
|
71 |
+
for task in schedule[device]:
|
72 |
+
# Determine task color and text color
|
73 |
+
if task["type"] == "forward":
|
74 |
+
color = forward_color
|
75 |
+
text_color = "white"
|
76 |
+
name = "Forward"
|
77 |
+
elif task["type"] == "backward":
|
78 |
+
color = backward_color
|
79 |
+
text_color = "black"
|
80 |
+
name = "Backward"
|
81 |
+
else: # optimizer or any other type
|
82 |
+
color = optimizer_color
|
83 |
+
text_color = "black"
|
84 |
+
name = "Optimizer step"
|
85 |
+
|
86 |
+
# Add rectangle for the task
|
87 |
+
start_time = task["start_time"]
|
88 |
+
duration = task["duration"]
|
89 |
+
|
90 |
+
# Create rectangle using shape
|
91 |
+
fig.add_shape(
|
92 |
+
type="rect",
|
93 |
+
x0=start_time,
|
94 |
+
y0=device_idx_reversed - 0.4,
|
95 |
+
x1=start_time + duration,
|
96 |
+
y1=device_idx_reversed + 0.4,
|
97 |
+
line=dict(color="black", width=0.5),
|
98 |
+
fillcolor=color,
|
99 |
+
layer="above",
|
100 |
+
)
|
101 |
+
|
102 |
+
# Add batch number text
|
103 |
+
fig.add_annotation(
|
104 |
+
x=start_time + duration / 2,
|
105 |
+
y=device_idx_reversed,
|
106 |
+
text=str(task["batch"]),
|
107 |
+
showarrow=False,
|
108 |
+
font=dict(color=text_color, size=10, family="Arial, bold"),
|
109 |
+
)
|
110 |
+
|
111 |
+
# Update progress
|
112 |
+
if show_progress:
|
113 |
+
tasks_processed += 1
|
114 |
+
progress_bar.update(1)
|
115 |
+
|
116 |
+
# Add custom legend
|
117 |
+
legend_items = [
|
118 |
+
dict(name="Forward", color=forward_color),
|
119 |
+
dict(name="Backward", color=backward_color),
|
120 |
+
dict(name="Optimizer step", color=optimizer_color)
|
121 |
+
]
|
122 |
+
|
123 |
+
for i, item in enumerate(legend_items):
|
124 |
+
fig.add_trace(go.Scatter(
|
125 |
+
x=[None],
|
126 |
+
y=[None],
|
127 |
+
mode='markers',
|
128 |
+
marker=dict(size=10, color=item['color']),
|
129 |
+
name=item['name'],
|
130 |
+
showlegend=True
|
131 |
+
))
|
132 |
+
if show_progress and i < len(legend_items) - 1:
|
133 |
+
progress_bar.update(1)
|
134 |
+
|
135 |
+
# Set axis properties
|
136 |
+
device_labels = [f"Device {i+1}" for i in range(num_stages)]
|
137 |
+
device_labels.reverse() # Reverse to put Device 1 at the top
|
138 |
+
|
139 |
+
fig.update_layout(
|
140 |
+
xaxis=dict(
|
141 |
+
showticklabels=False,
|
142 |
+
showgrid=False,
|
143 |
+
zeroline=False,
|
144 |
+
title="Time →",
|
145 |
+
range=[0, max_time + 0.5]
|
146 |
+
),
|
147 |
+
yaxis=dict(
|
148 |
+
tickmode="array",
|
149 |
+
tickvals=list(range(num_stages)),
|
150 |
+
ticktext=device_labels,
|
151 |
+
showgrid=False,
|
152 |
+
zeroline=False,
|
153 |
+
range=[-0.5, num_stages - 0.5]
|
154 |
+
),
|
155 |
+
margin=dict(l=50, r=50, t=50, b=50),
|
156 |
+
plot_bgcolor="white",
|
157 |
+
legend=dict(
|
158 |
+
orientation="h",
|
159 |
+
yanchor="bottom",
|
160 |
+
y=-0.2,
|
161 |
+
xanchor="center",
|
162 |
+
x=0.5
|
163 |
+
)
|
164 |
+
)
|
165 |
+
|
166 |
+
if show_progress:
|
167 |
+
progress_bar.update(1) # Final update for layout
|
168 |
+
progress_bar.close()
|
169 |
+
|
170 |
+
return fig
|
171 |
+
|
172 |
+
|
173 |
+
def create_dash_app(schedule: Dict[int, List[Dict]], schedule_type="1f1b"):
|
174 |
+
"""
|
175 |
+
Create a Dash app for interactive visualization of pipeline scheduling.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
schedule: Dictionary mapping device IDs to lists of tasks
|
179 |
+
schedule_type: Type of scheduling algorithm used
|
180 |
+
"""
|
181 |
+
app = dash.Dash(__name__, title="Pipeline Parallelism Visualization")
|
182 |
+
|
183 |
+
app.layout = html.Div([
|
184 |
+
html.H1(f"Pipeline Parallelism Visualization ({schedule_type.upper()})",
|
185 |
+
style={'textAlign': 'center'}),
|
186 |
+
|
187 |
+
html.Div(id="loading-container", children=[
|
188 |
+
dcc.Loading(
|
189 |
+
id="loading-graph",
|
190 |
+
type="circle",
|
191 |
+
children=[
|
192 |
+
html.Div(id="graph-container", children=[
|
193 |
+
dcc.Graph(
|
194 |
+
id='pipeline-graph',
|
195 |
+
style={'height': '600px'}
|
196 |
+
)
|
197 |
+
])
|
198 |
+
]
|
199 |
+
)
|
200 |
+
]),
|
201 |
+
|
202 |
+
html.Div([
|
203 |
+
html.Button("Download PNG", id="btn-download",
|
204 |
+
style={'margin': '10px'}),
|
205 |
+
dcc.Download(id="download-image")
|
206 |
+
], style={'textAlign': 'center', 'marginTop': '20px'})
|
207 |
+
])
|
208 |
+
|
209 |
+
@app.callback(
|
210 |
+
Output("pipeline-graph", "figure"),
|
211 |
+
Input("graph-container", "children"),
|
212 |
+
prevent_initial_call=False,
|
213 |
+
)
|
214 |
+
def load_graph(_):
|
215 |
+
# Create the figure when the app loads
|
216 |
+
return create_pipeline_figure(schedule, show_progress=True)
|
217 |
+
|
218 |
+
@app.callback(
|
219 |
+
Output("download-image", "data"),
|
220 |
+
Input("btn-download", "n_clicks"),
|
221 |
+
prevent_initial_call=True,
|
222 |
+
)
|
223 |
+
def download_image(n_clicks):
|
224 |
+
# Show progress in terminal for downloads
|
225 |
+
fig = create_pipeline_figure(schedule, show_progress=True)
|
226 |
+
img_bytes = fig.to_image(format="png", scale=3)
|
227 |
+
return dict(
|
228 |
+
content=img_bytes,
|
229 |
+
filename="pipeline_visualization.png"
|
230 |
+
)
|
231 |
+
|
232 |
+
return app
|
233 |
+
|
234 |
+
|
235 |
+
def visualize_pipeline_parallelism_dash(
|
236 |
+
schedule: Dict[int, List[Dict]],
|
237 |
+
schedule_type: Literal["simple", "1f1b"] = "1f1b",
|
238 |
+
port: int = 8050,
|
239 |
+
debug: bool = False
|
240 |
+
):
|
241 |
+
"""
|
242 |
+
Create an interactive Dash visualization for pipeline parallelism scheduling.
|
243 |
+
|
244 |
+
Args:
|
245 |
+
schedule: Dictionary mapping device IDs to lists of tasks
|
246 |
+
schedule_type: Type of scheduling algorithm used ("simple" or "1f1b")
|
247 |
+
port: Port number to run the Dash app
|
248 |
+
debug: Whether to run the app in debug mode
|
249 |
+
"""
|
250 |
+
app = create_dash_app(schedule, schedule_type)
|
251 |
+
print(f"Starting Dash app on http://localhost:{port}/")
|
252 |
+
app.run_server(debug=debug, port=port)
|
253 |
+
|
254 |
+
|
255 |
+
def save_pipeline_visualization_plotly(
|
256 |
+
schedule: Dict[int, List[Dict]],
|
257 |
+
schedule_type: Literal["simple", "1f1b"] = "1f1b",
|
258 |
+
output_file: str = "pipeline_visualization_plotly.png",
|
259 |
+
):
|
260 |
+
"""
|
261 |
+
Save a static Plotly visualization of pipeline parallelism scheduling.
|
262 |
+
|
263 |
+
Args:
|
264 |
+
schedule: Dictionary mapping device IDs to lists of tasks
|
265 |
+
schedule_type: Type of scheduling algorithm used
|
266 |
+
output_file: Path to save the visualization
|
267 |
+
"""
|
268 |
+
print(f"Creating visualization for {len(schedule)} devices...")
|
269 |
+
fig = create_pipeline_figure(schedule, show_progress=True)
|
270 |
+
|
271 |
+
# Update layout for static image
|
272 |
+
fig.update_layout(
|
273 |
+
title=f"Pipeline Parallelism Visualization ({schedule_type.upper()})",
|
274 |
+
title_x=0.5
|
275 |
+
)
|
276 |
+
|
277 |
+
print(f"Saving image to {output_file}...")
|
278 |
+
# Save as image
|
279 |
+
fig.write_image(output_file, scale=3)
|
280 |
+
print(f"Visualization saved to {output_file}")
|
281 |
+
|
282 |
+
|
283 |
+
if __name__ == "__main__":
|
284 |
+
# Example usage
|
285 |
+
import argparse
|
286 |
+
from pipeline import create_1f1b_schedule
|
287 |
+
|
288 |
+
parser = argparse.ArgumentParser(description="Pipeline Parallelism Visualizer")
|
289 |
+
parser.add_argument("--num-stages", type=int, default=4, help="Number of pipeline stages")
|
290 |
+
parser.add_argument("--num-batches", type=int, default=8, help="Number of microbatches")
|
291 |
+
parser.add_argument("--interactive", action="store_true", help="Run interactive Dash app")
|
292 |
+
parser.add_argument("--port", type=int, default=8050, help="Port for Dash app")
|
293 |
+
parser.add_argument("--output", type=str, default="pipeline_visualization_plotly.png", help="Output file for static image")
|
294 |
+
args = parser.parse_args()
|
295 |
+
|
296 |
+
# Create an example schedule
|
297 |
+
forward_times = [1.0] * args.num_stages
|
298 |
+
backward_times = [2.0] * args.num_stages
|
299 |
+
|
300 |
+
schedule = create_1f1b_schedule(
|
301 |
+
num_stages=args.num_stages,
|
302 |
+
num_batches=args.num_batches,
|
303 |
+
forward_times=forward_times,
|
304 |
+
backward_times=backward_times,
|
305 |
+
)
|
306 |
+
|
307 |
+
if args.interactive:
|
308 |
+
visualize_pipeline_parallelism_dash(schedule, port=args.port)
|
309 |
+
else:
|
310 |
+
save_pipeline_visualization_plotly(schedule, output_file=args.output)
|
pipeline.py
CHANGED
@@ -9,6 +9,11 @@ from typing import List, Tuple, Dict, Literal
|
|
9 |
|
10 |
# Import visualization function from the new module
|
11 |
from visualizer import visualize_pipeline_parallelism
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
def create_1f1b_schedule(
|
@@ -210,6 +215,7 @@ def get_bubble_rate(schedule: Dict[int, List[Dict]]):
|
|
210 |
if end_time > max_time:
|
211 |
max_time = end_time
|
212 |
|
|
|
213 |
total_execution_time = max_time * num_stages
|
214 |
|
215 |
total_computation_time = 0
|
@@ -325,6 +331,9 @@ def parse_args():
|
|
325 |
help="Time for point-to-point communication between stages",
|
326 |
)
|
327 |
|
|
|
|
|
|
|
328 |
return parser.parse_args()
|
329 |
|
330 |
|
@@ -447,9 +456,24 @@ def main():
|
|
447 |
|
448 |
# Create visualization unless --no-visualization is specified
|
449 |
if not args.no_visualization:
|
450 |
-
|
451 |
-
|
452 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
453 |
|
454 |
# Analyze the schedule
|
455 |
bubble_rate = get_bubble_rate(schedule)
|
|
|
9 |
|
10 |
# Import visualization function from the new module
|
11 |
from visualizer import visualize_pipeline_parallelism
|
12 |
+
try:
|
13 |
+
from dash_visualizer import visualize_pipeline_parallelism_dash, save_pipeline_visualization_plotly
|
14 |
+
DASH_AVAILABLE = True
|
15 |
+
except ImportError:
|
16 |
+
DASH_AVAILABLE = False
|
17 |
|
18 |
|
19 |
def create_1f1b_schedule(
|
|
|
215 |
if end_time > max_time:
|
216 |
max_time = end_time
|
217 |
|
218 |
+
print(f"Max time: {max_time}")
|
219 |
total_execution_time = max_time * num_stages
|
220 |
|
221 |
total_computation_time = 0
|
|
|
331 |
help="Time for point-to-point communication between stages",
|
332 |
)
|
333 |
|
334 |
+
parser.add_argument("--visualizer", choices=["matplotlib", "dash", "dash-interactive"],
|
335 |
+
default="matplotlib", help="Visualization library to use")
|
336 |
+
|
337 |
return parser.parse_args()
|
338 |
|
339 |
|
|
|
456 |
|
457 |
# Create visualization unless --no-visualization is specified
|
458 |
if not args.no_visualization:
|
459 |
+
if args.visualizer == "matplotlib" or not DASH_AVAILABLE:
|
460 |
+
if not DASH_AVAILABLE and args.visualizer in ["dash", "dash-interactive"]:
|
461 |
+
print("Warning: Dash not available. Falling back to matplotlib.")
|
462 |
+
visualize_pipeline_parallelism(
|
463 |
+
schedule=schedule, schedule_type="1f1b", output_file=output_file
|
464 |
+
)
|
465 |
+
elif args.visualizer == "dash":
|
466 |
+
# Get output file name without extension to use the appropriate extension
|
467 |
+
output_base = os.path.splitext(output_file)[0]
|
468 |
+
output_dash = f"{output_base}_plotly.png"
|
469 |
+
save_pipeline_visualization_plotly(
|
470 |
+
schedule=schedule, schedule_type="1f1b", output_file=output_dash
|
471 |
+
)
|
472 |
+
elif args.visualizer == "dash-interactive":
|
473 |
+
print("Using Dash interactive visualization")
|
474 |
+
visualize_pipeline_parallelism_dash(
|
475 |
+
schedule=schedule, schedule_type="1f1b", port=8050, debug=False
|
476 |
+
)
|
477 |
|
478 |
# Analyze the schedule
|
479 |
bubble_rate = get_bubble_rate(schedule)
|
requirements-dash.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dash==2.13.0
|
2 |
+
plotly==5.18.0
|
3 |
+
numpy
|
4 |
+
kaleido # For static image export
|
5 |
+
tqdm # For progress bars
|