Spaces:
Running
Running
Commit
·
ec19476
0
Parent(s):
Initial commit: 1F1B PP schedule visualization.
Browse files- .gitattributes +2 -0
- .gitignore +78 -0
- README.md +77 -0
- configs/standard.json +8 -0
- pipeline.py +477 -0
- visualizer.py +97 -0
.gitattributes
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
assets/*.png filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Python
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
*.so
|
6 |
+
.Python
|
7 |
+
build/
|
8 |
+
develop-eggs/
|
9 |
+
dist/
|
10 |
+
downloads/
|
11 |
+
eggs/
|
12 |
+
.eggs/
|
13 |
+
lib/
|
14 |
+
lib64/
|
15 |
+
parts/
|
16 |
+
sdist/
|
17 |
+
var/
|
18 |
+
wheels/
|
19 |
+
*.egg-info/
|
20 |
+
.installed.cfg
|
21 |
+
*.egg
|
22 |
+
|
23 |
+
# Virtual Environment
|
24 |
+
venv/
|
25 |
+
env/
|
26 |
+
ENV/
|
27 |
+
.env
|
28 |
+
|
29 |
+
# IDE specific files
|
30 |
+
.idea/
|
31 |
+
.vscode/
|
32 |
+
*.swp
|
33 |
+
*.swo
|
34 |
+
.DS_Store
|
35 |
+
|
36 |
+
# Jupyter Notebook
|
37 |
+
.ipynb_checkpoints
|
38 |
+
|
39 |
+
# Distribution / packaging
|
40 |
+
.Python
|
41 |
+
env/
|
42 |
+
build/
|
43 |
+
develop-eggs/
|
44 |
+
dist/
|
45 |
+
downloads/
|
46 |
+
eggs/
|
47 |
+
.eggs/
|
48 |
+
lib/
|
49 |
+
lib64/
|
50 |
+
parts/
|
51 |
+
sdist/
|
52 |
+
var/
|
53 |
+
wheels/
|
54 |
+
*.egg-info/
|
55 |
+
.installed.cfg
|
56 |
+
*.egg
|
57 |
+
|
58 |
+
# Unit test / coverage reports
|
59 |
+
htmlcov/
|
60 |
+
.tox/
|
61 |
+
.coverage
|
62 |
+
.coverage.*
|
63 |
+
.cache
|
64 |
+
nosetests.xml
|
65 |
+
coverage.xml
|
66 |
+
*.cover
|
67 |
+
.hypothesis/
|
68 |
+
|
69 |
+
# Pipeline visualization outputs
|
70 |
+
*.png
|
71 |
+
*.jpg
|
72 |
+
*.jpeg
|
73 |
+
*.pdf
|
74 |
+
*.svg
|
75 |
+
|
76 |
+
# Local configuration
|
77 |
+
config.ini
|
78 |
+
secrets.json
|
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Pipeline Parallelism Scheduler and Visualizer
|
2 |
+
|
3 |
+
This tool simulates and visualizes pipeline parallelism scheduling strategies, focusing on the 1F1B (One-Forward-One-Backward) scheduling algorithm commonly used in distributed deep learning.
|
4 |
+
|
5 |
+
## Usage
|
6 |
+
|
7 |
+
### Example Output
|
8 |
+
|
9 |
+
```bash
|
10 |
+
python pipeline.py --num-stages 4 --num-batches 8
|
11 |
+
```
|
12 |
+

|
13 |
+
|
14 |
+
### Command Line Interface
|
15 |
+
|
16 |
+
| Option | Short | Description |
|
17 |
+
|--------|-------|-------------|
|
18 |
+
| `--config` | `-c` | Path to config file (JSON or YAML) |
|
19 |
+
| `--num-stages` | `-s` | Number of pipeline stages (devices) |
|
20 |
+
| `--num-batches` | `-b` | Number of micro-batches |
|
21 |
+
| `--forward-times` | `-f` | Time for forward pass at each stage (space-separated list) |
|
22 |
+
| `--backward-times` | `-bw` | Time for backward pass at each stage (space-separated list) |
|
23 |
+
| `--output` | `-o` | Output file path for visualization |
|
24 |
+
| `--no-visualization` | | Skip visualization generation |
|
25 |
+
| `--p2p-time`| | P2P communication time of PP |
|
26 |
+
|
27 |
+
### Using Configuration Files
|
28 |
+
|
29 |
+
You can use either JSON or YAML configuration files:
|
30 |
+
|
31 |
+
Example JSON configuration (sample_config.json):
|
32 |
+
```json
|
33 |
+
{
|
34 |
+
"num_stages": 6,
|
35 |
+
"num_batches": 12,
|
36 |
+
"forward_times": [0.8, 1.0, 1.2, 1.0, 0.9, 1.1],
|
37 |
+
"backward_times": [1.6, 2.0, 2.4, 2.0, 1.8, 2.2],
|
38 |
+
"output_file": "pipeline_1f1b_custom.png"
|
39 |
+
}
|
40 |
+
```
|
41 |
+
|
42 |
+
Example YAML configuration (sample_config.yaml):
|
43 |
+
```yaml
|
44 |
+
# Pipeline Parallelism Configuration
|
45 |
+
num_stages: 5
|
46 |
+
num_batches: 8
|
47 |
+
forward_times:
|
48 |
+
- 0.9
|
49 |
+
- 1.1
|
50 |
+
- 1.0
|
51 |
+
- 0.8
|
52 |
+
- 1.2
|
53 |
+
backward_times:
|
54 |
+
- 1.8
|
55 |
+
- 2.2
|
56 |
+
- 2.0
|
57 |
+
- 1.6
|
58 |
+
- 2.4
|
59 |
+
output_file: "pipeline_1f1b_yaml.png"
|
60 |
+
```
|
61 |
+
|
62 |
+
## About Pipeline Parallelism
|
63 |
+
|
64 |
+
Pipeline parallelism is a distributed deep learning training strategy that splits model layers across multiple devices. Each device processes a different stage of the neural network, creating a pipeline where multiple micro-batches can be processed simultaneously.
|
65 |
+
|
66 |
+
The 1F1B (One-Forward-One-Backward) scheduling algorithm is an efficient strategy for pipeline parallelism that balances throughput with memory usage. It follows these phases:
|
67 |
+
1. **Warmup Phase**: Forward passes for the first several micro-batches
|
68 |
+
2. **Steady State**: Each device alternates between forward and backward passes
|
69 |
+
3. **Cooldown Phase**: Backward passes to complete the computation for remaining micro-batches
|
70 |
+
|
71 |
+
The "bubble rate" metric measures the inefficiency in the pipeline, representing the percentage of time devices spend idle waiting for dependencies.
|
72 |
+
|
73 |
+
## References
|
74 |
+
|
75 |
+
- PipeDream: Generalized Pipeline Parallelism for DNN Training (SOSP'19)
|
76 |
+
- GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism (NeurIPS'19)
|
77 |
+
- Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism
|
configs/standard.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"num_stages": 4,
|
3 |
+
"num_batches": 8,
|
4 |
+
"forward_times": [1.0, 1.0, 1.0, 1.0],
|
5 |
+
"backward_times": [2.0, 2.0, 2.0, 2.0],
|
6 |
+
"output_file": "pipeline_1f1b.png",
|
7 |
+
"p2p_time": 0.0
|
8 |
+
}
|
pipeline.py
ADDED
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import numpy as np
|
3 |
+
import argparse
|
4 |
+
import json
|
5 |
+
import yaml
|
6 |
+
import os
|
7 |
+
from matplotlib.patches import Rectangle
|
8 |
+
from typing import List, Tuple, Dict, Literal
|
9 |
+
|
10 |
+
# Import visualization function from the new module
|
11 |
+
from visualizer import visualize_pipeline_parallelism
|
12 |
+
|
13 |
+
|
14 |
+
def create_1f1b_schedule(
|
15 |
+
num_stages: int,
|
16 |
+
num_batches: int,
|
17 |
+
forward_times: List[float],
|
18 |
+
backward_times: List[float],
|
19 |
+
p2p_time: float = 0.0,
|
20 |
+
) -> Dict[int, List[Dict]]:
|
21 |
+
"""
|
22 |
+
Create a 1F1B (One-Forward-One-Backward) schedule for pipeline parallelism.
|
23 |
+
|
24 |
+
This implementation takes a data-centric approach:
|
25 |
+
1. First determine the operation sequence for each pipeline stage (which microbatch to process when)
|
26 |
+
2. Then calculate timing based on dependencies between operations
|
27 |
+
|
28 |
+
The 1F1B pattern has three phases:
|
29 |
+
- Warmup: Forward passes for first num_stages microbatches
|
30 |
+
- Steady state: Alternating between forward and backward passes
|
31 |
+
- Cooldown: Backward passes for remaining microbatches
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
A dictionary mapping device IDs to lists of tasks.
|
35 |
+
Each task is a dictionary with keys:
|
36 |
+
- 'type': 'forward' or 'backward'
|
37 |
+
- 'batch': batch number
|
38 |
+
- 'start_time': start time of the task
|
39 |
+
- 'duration': duration of the task
|
40 |
+
"""
|
41 |
+
# Initialize empty schedule
|
42 |
+
schedule = {stage: [] for stage in range(num_stages)}
|
43 |
+
|
44 |
+
# Step 1: Determine operation sequence for each stage
|
45 |
+
# This will generate the sequence of operations (forward/backward on which microbatch)
|
46 |
+
# that each stage should perform, without timing information yet
|
47 |
+
operation_sequence = determine_1f1b_operation_sequence(num_stages, num_batches)
|
48 |
+
|
49 |
+
# Step 2: Convert operation sequence to schedule with timing
|
50 |
+
# Taking into account dependencies between operations
|
51 |
+
schedule = calculate_operation_timing(
|
52 |
+
operation_sequence, num_stages, forward_times, backward_times, p2p_time
|
53 |
+
)
|
54 |
+
|
55 |
+
return schedule
|
56 |
+
|
57 |
+
|
58 |
+
def determine_1f1b_operation_sequence(
|
59 |
+
num_stages: int, num_batches: int
|
60 |
+
) -> Dict[int, List[Dict]]:
|
61 |
+
"""
|
62 |
+
Determine the sequence of operations (forward/backward) for each stage in 1F1B scheduling.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
num_stages: Number of pipeline stages
|
66 |
+
num_batches: Number of micro-batches
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
Dictionary mapping stage ID to a list of operations in sequence.
|
70 |
+
Each operation is a dict with keys 'type' ('forward' or 'backward') and 'batch'.
|
71 |
+
"""
|
72 |
+
operation_sequence = {i: [] for i in range(num_stages)}
|
73 |
+
for current_stage in range(num_stages):
|
74 |
+
warmup_batches = num_stages - current_stage
|
75 |
+
for j in range(1, warmup_batches + 1):
|
76 |
+
operation_sequence[current_stage].append({"type": "forward", "batch": j})
|
77 |
+
steady_batches = num_batches - warmup_batches
|
78 |
+
for j in range(warmup_batches + 1, warmup_batches + steady_batches + 1):
|
79 |
+
operation_sequence[current_stage].append(
|
80 |
+
{"type": "backward", "batch": j - warmup_batches}
|
81 |
+
)
|
82 |
+
operation_sequence[current_stage].append({"type": "forward", "batch": j})
|
83 |
+
for j in range(warmup_batches):
|
84 |
+
operation_sequence[current_stage].append(
|
85 |
+
{"type": "backward", "batch": j + steady_batches + 1}
|
86 |
+
)
|
87 |
+
|
88 |
+
return operation_sequence
|
89 |
+
|
90 |
+
|
91 |
+
def calculate_operation_timing(
|
92 |
+
operation_sequence: Dict[int, List[Dict]],
|
93 |
+
num_stages: int,
|
94 |
+
forward_times: List[float],
|
95 |
+
backward_times: List[float],
|
96 |
+
p2p_time: float = 0.0,
|
97 |
+
) -> Dict[int, List[Dict]]:
|
98 |
+
"""
|
99 |
+
Recursively calculate the specific timing of each operation in a 1F1B schedule.
|
100 |
+
|
101 |
+
When encountering an operation that depends on a previous operation that hasn't been calculated yet,
|
102 |
+
it will recursively calculate the timing of those operations.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
operation_sequence: Operation sequence for each stage
|
106 |
+
num_stages: Number of pipeline stages
|
107 |
+
forward_times: Forward propagation time for each stage
|
108 |
+
backward_times: Backward propagation time for each stage
|
109 |
+
p2p_time: Point-to-point communication time between stages
|
110 |
+
|
111 |
+
Returns:
|
112 |
+
Complete schedule with timing information, each operation includes start_time and duration
|
113 |
+
"""
|
114 |
+
# Initialize schedule with timing information
|
115 |
+
schedule = {i: [] for i in range(num_stages)}
|
116 |
+
|
117 |
+
# For recording already computed operation end times
|
118 |
+
# Format: {(stage, batch, op_type): (start_time, end_time)}
|
119 |
+
computed_ops = {}
|
120 |
+
|
121 |
+
# For recording the end time of the last operation for each stage
|
122 |
+
stage_last_end_time = [0.0] * num_stages
|
123 |
+
|
124 |
+
# Helper function: recursively calculate the time for an operation
|
125 |
+
def compute_op_time(stage, batch, op_type):
|
126 |
+
# Check if this operation has already been calculated
|
127 |
+
key = (stage, batch, op_type)
|
128 |
+
if key in computed_ops:
|
129 |
+
return computed_ops[key]
|
130 |
+
|
131 |
+
# Get operation duration
|
132 |
+
duration = (
|
133 |
+
forward_times[stage] if op_type == "forward" else backward_times[stage]
|
134 |
+
)
|
135 |
+
|
136 |
+
# Determine start time (dependent on other operations)
|
137 |
+
# 1. Consider sequential dependencies on the stage (must wait for previous operation to complete)
|
138 |
+
start_time = stage_last_end_time[stage]
|
139 |
+
|
140 |
+
# 2. Forward pass also depends on forward pass of previous stage (if not the first stage)
|
141 |
+
if op_type == "forward" and stage > 0:
|
142 |
+
# Recursively calculate the time for the forward pass of the previous stage (if not calculated yet)
|
143 |
+
prev_stage_key = (stage - 1, batch, "forward")
|
144 |
+
if prev_stage_key not in computed_ops:
|
145 |
+
prev_start, prev_end = compute_op_time(stage - 1, batch, "forward")
|
146 |
+
else:
|
147 |
+
_, prev_end = computed_ops[prev_stage_key]
|
148 |
+
# Update start time
|
149 |
+
start_time = max(start_time, prev_end + p2p_time)
|
150 |
+
|
151 |
+
# 3. Backward pass depends on:
|
152 |
+
elif op_type == "backward":
|
153 |
+
# a. Forward pass of the same stage
|
154 |
+
same_stage_forward_key = (stage, batch, "forward")
|
155 |
+
if same_stage_forward_key not in computed_ops:
|
156 |
+
_, forward_end = compute_op_time(stage, batch, "forward")
|
157 |
+
else:
|
158 |
+
_, forward_end = computed_ops[same_stage_forward_key]
|
159 |
+
|
160 |
+
start_time = max(start_time, forward_end)
|
161 |
+
|
162 |
+
# b. Backward pass of the next stage (if not the last stage)
|
163 |
+
if stage < num_stages - 1:
|
164 |
+
next_stage_backward_key = (stage + 1, batch, "backward")
|
165 |
+
if next_stage_backward_key not in computed_ops:
|
166 |
+
_, next_backward_end = compute_op_time(stage + 1, batch, "backward")
|
167 |
+
else:
|
168 |
+
_, next_backward_end = computed_ops[next_stage_backward_key]
|
169 |
+
|
170 |
+
start_time = max(start_time, next_backward_end + p2p_time)
|
171 |
+
|
172 |
+
# Calculate end time
|
173 |
+
end_time = start_time + duration
|
174 |
+
|
175 |
+
# Store calculation results
|
176 |
+
computed_ops[key] = (start_time, end_time)
|
177 |
+
|
178 |
+
# Update the end time of the last operation for this stage
|
179 |
+
stage_last_end_time[stage] = end_time
|
180 |
+
|
181 |
+
return start_time, end_time
|
182 |
+
|
183 |
+
# Calculate time for each operation in the operation_sequence
|
184 |
+
for i in range(len(operation_sequence[0])):
|
185 |
+
for stage in range(num_stages):
|
186 |
+
batch = operation_sequence[stage][i]["batch"]
|
187 |
+
op_type = operation_sequence[stage][i]["type"]
|
188 |
+
|
189 |
+
# Recursively calculate the time for this operation
|
190 |
+
start_time, _ = compute_op_time(stage, batch, op_type)
|
191 |
+
|
192 |
+
# Fill in scheduling information
|
193 |
+
op_with_timing = operation_sequence[stage][i].copy()
|
194 |
+
op_with_timing["start_time"] = start_time
|
195 |
+
op_with_timing["duration"] = (
|
196 |
+
forward_times[stage] if op_type == "forward" else backward_times[stage]
|
197 |
+
)
|
198 |
+
schedule[stage].append(op_with_timing)
|
199 |
+
|
200 |
+
return schedule
|
201 |
+
|
202 |
+
|
203 |
+
def get_bubble_rate(schedule: Dict[int, List[Dict]]):
|
204 |
+
num_stages = len(schedule)
|
205 |
+
|
206 |
+
max_time = 0
|
207 |
+
for device in schedule:
|
208 |
+
for task in schedule[device]:
|
209 |
+
end_time = task["start_time"] + task["duration"]
|
210 |
+
if end_time > max_time:
|
211 |
+
max_time = end_time
|
212 |
+
|
213 |
+
total_execution_time = max_time * num_stages
|
214 |
+
|
215 |
+
total_computation_time = 0
|
216 |
+
device_computation_times = {}
|
217 |
+
|
218 |
+
for device in schedule:
|
219 |
+
device_computation_time = 0
|
220 |
+
for task in schedule[device]:
|
221 |
+
device_computation_time += task["duration"]
|
222 |
+
device_computation_times[device] = device_computation_time
|
223 |
+
total_computation_time += device_computation_time
|
224 |
+
|
225 |
+
bubble_rate = (
|
226 |
+
total_execution_time - total_computation_time
|
227 |
+
) / total_computation_time
|
228 |
+
return bubble_rate
|
229 |
+
|
230 |
+
|
231 |
+
def read_config_file(config_path):
|
232 |
+
"""
|
233 |
+
Read configuration from a JSON or YAML file.
|
234 |
+
|
235 |
+
Args:
|
236 |
+
config_path: Path to the config file (JSON or YAML)
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
Dictionary containing configuration parameters
|
240 |
+
"""
|
241 |
+
if not os.path.exists(config_path):
|
242 |
+
raise FileNotFoundError(f"Config file not found: {config_path}")
|
243 |
+
|
244 |
+
file_ext = os.path.splitext(config_path)[1].lower()
|
245 |
+
|
246 |
+
try:
|
247 |
+
with open(config_path, "r") as f:
|
248 |
+
if file_ext == ".json":
|
249 |
+
config = json.load(f)
|
250 |
+
elif file_ext in (".yaml", ".yml"):
|
251 |
+
config = yaml.safe_load(f)
|
252 |
+
else:
|
253 |
+
raise ValueError(
|
254 |
+
f"Unsupported config file format: {file_ext}. Use .json, .yaml, or .yml"
|
255 |
+
)
|
256 |
+
return config
|
257 |
+
except Exception as e:
|
258 |
+
raise ValueError(f"Error reading config file: {str(e)}")
|
259 |
+
|
260 |
+
|
261 |
+
def parse_args():
|
262 |
+
"""
|
263 |
+
Parse command-line arguments for the pipeline parallelism tool.
|
264 |
+
|
265 |
+
Returns:
|
266 |
+
Parsed arguments namespace
|
267 |
+
"""
|
268 |
+
parser = argparse.ArgumentParser(
|
269 |
+
description="Pipeline Parallelism Scheduler and Visualizer",
|
270 |
+
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
|
271 |
+
)
|
272 |
+
|
273 |
+
# Config file option
|
274 |
+
parser.add_argument(
|
275 |
+
"--config", "-c", type=str, help="Path to config file (JSON or YAML)"
|
276 |
+
)
|
277 |
+
|
278 |
+
# Main parameters
|
279 |
+
parser.add_argument(
|
280 |
+
"--num-stages",
|
281 |
+
"-s",
|
282 |
+
type=int,
|
283 |
+
default=4,
|
284 |
+
help="Number of pipeline stages (devices)",
|
285 |
+
)
|
286 |
+
|
287 |
+
parser.add_argument(
|
288 |
+
"--num-batches", "-b", type=int, default=10, help="Number of micro-batches"
|
289 |
+
)
|
290 |
+
|
291 |
+
# Forward and backward times
|
292 |
+
parser.add_argument(
|
293 |
+
"--forward-times",
|
294 |
+
"-f",
|
295 |
+
type=float,
|
296 |
+
nargs="+",
|
297 |
+
help="Time for forward pass at each stage (space-separated list)",
|
298 |
+
)
|
299 |
+
|
300 |
+
parser.add_argument(
|
301 |
+
"--backward-times",
|
302 |
+
"-bw",
|
303 |
+
type=float,
|
304 |
+
nargs="+",
|
305 |
+
help="Time for backward pass at each stage (space-separated list)",
|
306 |
+
)
|
307 |
+
|
308 |
+
# Output options
|
309 |
+
parser.add_argument(
|
310 |
+
"--output",
|
311 |
+
"-o",
|
312 |
+
type=str,
|
313 |
+
default="pipeline_1f1b.png",
|
314 |
+
help="Output file path for visualization",
|
315 |
+
)
|
316 |
+
|
317 |
+
parser.add_argument(
|
318 |
+
"--no-visualization", action="store_true", help="Skip visualization generation"
|
319 |
+
)
|
320 |
+
|
321 |
+
parser.add_argument(
|
322 |
+
"--p2p-time",
|
323 |
+
type=float,
|
324 |
+
default=0.0,
|
325 |
+
help="Time for point-to-point communication between stages",
|
326 |
+
)
|
327 |
+
|
328 |
+
return parser.parse_args()
|
329 |
+
|
330 |
+
|
331 |
+
def example_usage():
|
332 |
+
"""Example usage of the visualization function and testing the scheduling algorithms."""
|
333 |
+
# Example parameters
|
334 |
+
num_stages = 4 # Number of pipeline stages (devices)
|
335 |
+
num_batches = 10 # Number of micro-batches
|
336 |
+
|
337 |
+
# Example times for forward and backward passes for each stage
|
338 |
+
forward_times = [1.0, 1.0, 1.0, 1.0] # Time for forward pass at each stage
|
339 |
+
backward_times = [2.0, 2.0, 2.0, 2.0] # Time for backward pass at each stage
|
340 |
+
|
341 |
+
# Create 1F1B schedule
|
342 |
+
schedule = create_1f1b_schedule(
|
343 |
+
num_stages=num_stages,
|
344 |
+
num_batches=num_batches,
|
345 |
+
forward_times=forward_times,
|
346 |
+
backward_times=backward_times,
|
347 |
+
)
|
348 |
+
|
349 |
+
# Create visualization with the schedule
|
350 |
+
visualize_pipeline_parallelism(
|
351 |
+
schedule=schedule, schedule_type="1f1b", output_file="pipeline_1f1b.png"
|
352 |
+
)
|
353 |
+
|
354 |
+
# Analyze the schedule
|
355 |
+
bubble_rate = get_bubble_rate(schedule)
|
356 |
+
print(f"Bubble rate: {bubble_rate:.4f}")
|
357 |
+
|
358 |
+
|
359 |
+
def main():
|
360 |
+
"""
|
361 |
+
Main function that parses arguments and runs the pipeline parallelism analysis.
|
362 |
+
"""
|
363 |
+
args = parse_args()
|
364 |
+
|
365 |
+
# Initialize with default values
|
366 |
+
num_stages = 4
|
367 |
+
num_batches = 10
|
368 |
+
forward_times = None
|
369 |
+
backward_times = None
|
370 |
+
output_file = "pipeline_1f1b.png"
|
371 |
+
p2p_time = 0.0
|
372 |
+
# Read from config file if provided
|
373 |
+
if args.config:
|
374 |
+
try:
|
375 |
+
print(f"Reading configuration from {args.config}")
|
376 |
+
config = read_config_file(args.config)
|
377 |
+
|
378 |
+
# Update parameters from config
|
379 |
+
num_stages = config.get("num_stages", num_stages)
|
380 |
+
num_batches = config.get("num_batches", num_batches)
|
381 |
+
forward_times = config.get("forward_times")
|
382 |
+
backward_times = config.get("backward_times")
|
383 |
+
output_file = config.get("output_file", output_file)
|
384 |
+
p2p_time = config.get("p2p_time", 0.0)
|
385 |
+
|
386 |
+
except Exception as e:
|
387 |
+
print(f"Error reading config file: {str(e)}")
|
388 |
+
print("Falling back to command line arguments or defaults")
|
389 |
+
|
390 |
+
# Command line arguments override config file
|
391 |
+
if args.num_stages:
|
392 |
+
num_stages = args.num_stages
|
393 |
+
|
394 |
+
if args.num_batches:
|
395 |
+
num_batches = args.num_batches
|
396 |
+
|
397 |
+
if args.forward_times:
|
398 |
+
forward_times = args.forward_times
|
399 |
+
|
400 |
+
if args.backward_times:
|
401 |
+
backward_times = args.backward_times
|
402 |
+
|
403 |
+
if args.output:
|
404 |
+
output_file = args.output
|
405 |
+
|
406 |
+
if args.p2p_time:
|
407 |
+
p2p_time = args.p2p_time
|
408 |
+
|
409 |
+
# Validate inputs
|
410 |
+
if forward_times is None:
|
411 |
+
forward_times = [1.0] * num_stages
|
412 |
+
elif len(forward_times) != num_stages:
|
413 |
+
print(
|
414 |
+
f"Warning: forward_times length ({len(forward_times)}) doesn't match num_stages ({num_stages})"
|
415 |
+
)
|
416 |
+
if len(forward_times) < num_stages:
|
417 |
+
# Extend with repeats of the last value
|
418 |
+
forward_times = list(forward_times) + [forward_times[-1]] * (
|
419 |
+
num_stages - len(forward_times)
|
420 |
+
)
|
421 |
+
else:
|
422 |
+
# Truncate
|
423 |
+
forward_times = forward_times[:num_stages]
|
424 |
+
print(f"Adjusted forward_times: {forward_times}")
|
425 |
+
|
426 |
+
if backward_times is None:
|
427 |
+
backward_times = [2.0] * num_stages
|
428 |
+
elif len(backward_times) != num_stages:
|
429 |
+
print(
|
430 |
+
f"Warning: backward_times length ({len(backward_times)}) doesn't match num_stages ({num_stages})"
|
431 |
+
)
|
432 |
+
if len(backward_times) < num_stages:
|
433 |
+
# Extend with repeats of the last value
|
434 |
+
backward_times = list(backward_times) + [backward_times[-1]] * (
|
435 |
+
num_stages - len(backward_times)
|
436 |
+
)
|
437 |
+
else:
|
438 |
+
# Truncate
|
439 |
+
backward_times = backward_times[:num_stages]
|
440 |
+
print(f"Adjusted backward_times: {backward_times}")
|
441 |
+
|
442 |
+
print(f"Running with parameters:")
|
443 |
+
print(f" num_stages: {num_stages}")
|
444 |
+
print(f" num_batches: {num_batches}")
|
445 |
+
print(f" forward_times: {forward_times}")
|
446 |
+
print(f" backward_times: {backward_times}")
|
447 |
+
print(f" output_file: {output_file}")
|
448 |
+
|
449 |
+
# Create 1F1B schedule
|
450 |
+
schedule = create_1f1b_schedule(
|
451 |
+
num_stages=num_stages,
|
452 |
+
num_batches=num_batches,
|
453 |
+
forward_times=forward_times,
|
454 |
+
backward_times=backward_times,
|
455 |
+
p2p_time=p2p_time,
|
456 |
+
)
|
457 |
+
|
458 |
+
# Create visualization unless --no-visualization is specified
|
459 |
+
if not args.no_visualization:
|
460 |
+
visualize_pipeline_parallelism(
|
461 |
+
schedule=schedule, schedule_type="1f1b", output_file=output_file
|
462 |
+
)
|
463 |
+
|
464 |
+
# Analyze the schedule
|
465 |
+
bubble_rate = get_bubble_rate(schedule)
|
466 |
+
print(f"Bubble rate: {bubble_rate:.4f}")
|
467 |
+
|
468 |
+
return {
|
469 |
+
"schedule": schedule,
|
470 |
+
"bubble_rate": bubble_rate,
|
471 |
+
"num_stages": num_stages,
|
472 |
+
"num_batches": num_batches,
|
473 |
+
}
|
474 |
+
|
475 |
+
|
476 |
+
if __name__ == "__main__":
|
477 |
+
main()
|
visualizer.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import numpy as np
|
3 |
+
from matplotlib.patches import Rectangle
|
4 |
+
from typing import List, Dict, Literal
|
5 |
+
|
6 |
+
|
7 |
+
def visualize_pipeline_parallelism(
|
8 |
+
schedule: Dict[int, List[Dict]],
|
9 |
+
schedule_type: Literal["simple", "1f1b"] = "1f1b",
|
10 |
+
output_file: str = "pipeline_visualization.png",
|
11 |
+
):
|
12 |
+
"""
|
13 |
+
Visualize pipeline parallelism scheduling.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
schedule: Dictionary mapping device IDs to lists of tasks.
|
17 |
+
Each task is a dictionary with keys:
|
18 |
+
- 'type': 'forward' or 'backward'
|
19 |
+
- 'batch': batch number
|
20 |
+
- 'start_time': start time of the task
|
21 |
+
- 'duration': duration of the task
|
22 |
+
schedule_type: Type of scheduling algorithm used ("simple" or "1f1b")
|
23 |
+
output_file: Path to save the visualization
|
24 |
+
"""
|
25 |
+
# Colors for forward and backward passes
|
26 |
+
forward_color = "royalblue"
|
27 |
+
backward_color = "lightgreen"
|
28 |
+
empty_color = "lightgray"
|
29 |
+
|
30 |
+
# Find the number of stages (devices)
|
31 |
+
num_stages = len(schedule)
|
32 |
+
|
33 |
+
# Find the maximum time in the schedule
|
34 |
+
max_time = 0
|
35 |
+
for device in schedule:
|
36 |
+
for task in schedule[device]:
|
37 |
+
end_time = task["start_time"] + task["duration"]
|
38 |
+
if end_time > max_time:
|
39 |
+
max_time = end_time
|
40 |
+
|
41 |
+
# Create figure and axis
|
42 |
+
fig, ax = plt.subplots(figsize=(15, 5))
|
43 |
+
|
44 |
+
# Plot the schedule
|
45 |
+
for device_idx, device in enumerate(schedule):
|
46 |
+
for task in schedule[device]:
|
47 |
+
color = forward_color if task["type"] == "forward" else backward_color
|
48 |
+
rect = Rectangle(
|
49 |
+
(task["start_time"], device_idx),
|
50 |
+
task["duration"],
|
51 |
+
0.8,
|
52 |
+
edgecolor="black",
|
53 |
+
facecolor=color,
|
54 |
+
alpha=0.8,
|
55 |
+
)
|
56 |
+
ax.add_patch(rect)
|
57 |
+
|
58 |
+
# Add text (batch number)
|
59 |
+
ax.text(
|
60 |
+
task["start_time"] + task["duration"] / 2,
|
61 |
+
device_idx + 0.4,
|
62 |
+
str(task["batch"]),
|
63 |
+
ha="center",
|
64 |
+
va="center",
|
65 |
+
fontsize=10,
|
66 |
+
fontweight="bold",
|
67 |
+
color="white" if task["type"] == "forward" else "black",
|
68 |
+
)
|
69 |
+
|
70 |
+
# Set axis limits and labels
|
71 |
+
ax.set_xlim(0, max_time * 1.05)
|
72 |
+
ax.set_ylim(-0.2, num_stages + 0.2)
|
73 |
+
ax.set_yticks(np.arange(num_stages) + 0.4)
|
74 |
+
ax.set_yticklabels([f"Device {i+1}" for i in range(num_stages)])
|
75 |
+
ax.set_xlabel("Time")
|
76 |
+
ax.set_title(f"Pipeline Parallelism Schedule ({schedule_type})")
|
77 |
+
|
78 |
+
# Add a legend
|
79 |
+
forward_patch = Rectangle((0, 0), 1, 1, facecolor=forward_color)
|
80 |
+
backward_patch = Rectangle((0, 0), 1, 1, facecolor=backward_color)
|
81 |
+
ax.legend(
|
82 |
+
[forward_patch, backward_patch],
|
83 |
+
["Forward Pass", "Backward Pass"],
|
84 |
+
loc="upper center",
|
85 |
+
bbox_to_anchor=(0.5, -0.15),
|
86 |
+
ncol=2,
|
87 |
+
)
|
88 |
+
|
89 |
+
# Add grid
|
90 |
+
ax.grid(True, linestyle="--", alpha=0.7)
|
91 |
+
|
92 |
+
# Save the figure
|
93 |
+
plt.tight_layout()
|
94 |
+
plt.savefig(output_file, dpi=300, bbox_inches="tight")
|
95 |
+
plt.close()
|
96 |
+
|
97 |
+
print(f"Visualization saved to {output_file}")
|