Spaces:
Sleeping
Sleeping
File size: 18,985 Bytes
7d5189a dfcfb88 a5812ce 7d5189a ee38d7b 7d5189a 70bea70 7d5189a 70bea70 7d5189a ee38d7b 7d5189a ee38d7b 7d5189a ee38d7b 7d5189a ee38d7b 7d5189a ee38d7b 7d5189a ee38d7b 7d5189a ee38d7b 7d5189a 6fd659b ee38d7b 7d5189a ee38d7b 7d5189a ee38d7b 7d5189a ee38d7b 7d5189a 70bea70 7d5189a 70bea70 7d5189a ee38d7b 7d5189a a819b10 7d5189a ee38d7b a819b10 a5812ce a819b10 ee38d7b a5812ce ee38d7b a5812ce 7d5189a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import gradio as gr
import torch
import os
from utils import call
from diffusers import (
DDPMScheduler,
DDIMScheduler,
PNDMScheduler,
LMSDiscreteScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
DPMSolverMultistepScheduler,
)
from diffusers.pipelines import StableDiffusionXLPipeline
StableDiffusionXLPipeline.__call__ = call
import os
from trainscripts.textsliders.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
from trainscripts.textsliders.demotrain import train_xl
os.environ['CURL_CA_BUNDLE'] = ''
model_map = {
'年龄调整': 'models/age.pt',
'体型丰满': 'models/chubby.pt',
'肌肉感': 'models/muscular.pt',
'惊讶表情': 'models/suprised_look.pt',
'微笑': 'models/smiling.pt',
'职业感': 'models/professional.pt',
'长发': 'models/long_hair.pt',
'卷发': 'models/curlyhair.pt',
'Pixar风格': 'models/pixar_style.pt',
'雕塑风格': 'models/sculpture_style.pt',
'陶土风格': 'models/clay_style.pt',
'修复图像': 'models/repair_slider.pt',
'修复手部': 'models/fix_hands.pt',
'杂乱房间': 'models/cluttered_room.pt',
'阴暗天气': 'models/dark_weather.pt',
'节日氛围': 'models/festive.pt',
'热带天气': 'models/tropical_weather.pt',
'冬季天气': 'models/winter_weather.pt',
'弯眉': 'models/eyebrow.pt',
'眼睛大小 (使用刻度 -3, -1, 1, 3)': 'models/eyesize.pt',
}
ORIGINAL_SPACE_ID = 'baulab/ConceptSliders'
SPACE_ID = os.getenv('SPACE_ID')
SHARED_UI_WARNING = f'''## 注意 - 在此共享UI中训练可能会很慢。您可以选择复制并使用至少40GB GPU的设备,或克隆此存储库以在自己的机器上运行。
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-复制空间-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="复制空间"></a></center>
'''
def merge_lora_networks(networks):
if not networks:
return None
base_network = networks[0]
for network in networks[1:]:
for name, param in network.named_parameters():
if name in base_network.state_dict():
base_network.state_dict()[name].add_(param)
else:
base_network.state_dict()[name] = param.clone()
return base_network
class Demo:
def __init__(self) -> None:
self.training = False
self.generating = False
self.device = 'cuda'
self.weight_dtype = torch.bfloat16
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
if torch.cuda.is_available():
self.device = 'cuda'
else:
self.device = 'cpu'
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=self.weight_dtype).to(self.device)
pipe = None
del pipe
torch.cuda.empty_cache()
model_id = "stabilityai/sdxl-turbo"
self.current_model = 'SDXL Turbo'
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=euler_anc, torch_dtype=self.weight_dtype).to(self.device)
if torch.cuda.is_available():
self.pipe.enable_xformers_memory_efficient_attention()
self.guidance_scale = 1
self.num_inference_steps = 3
with gr.Blocks() as demo:
self.layout()
demo.queue(max_size=5).launch(share=True, max_threads=2)
def layout(self):
with gr.Row():
if SPACE_ID == ORIGINAL_SPACE_ID:
self.warning = gr.Markdown(SHARED_UI_WARNING)
with gr.Row():
with gr.Tab("测试") as inference_column:
with gr.Row():
self.explain_infr = gr.Markdown(value='这是[概念滑块:用于扩散模型的LoRA适配器](https://sliders.baulab.info/)的演示。要尝试可以控制特定概念的模型,请选择一个模型并输入任何提示词,选择一个种子值,最后选择SDEdit时间步以保持结构。较高的SDEdit时间步会导致更多的结构变化。例如,如果选择“惊讶表情”模型,可以生成提示词“A picture of a person, realistic, 8k”的图像,并将滑块效果与原始模型生成的图像进行比较。我们还提供了几个其他预先微调的模型,如“修复”滑块,用于修复SDXL生成图像中的缺陷(请查看“预训练滑块”下拉菜单)。您还可以训练和运行自己的自定义滑块。请查看“训练”部分以进行自定义概念滑块训练。<b>当前推理正在运行SDXL Turbo!</b>')
with gr.Row():
with gr.Column(scale=1):
self.prompt_input_infr = gr.Text(
placeholder="photo of a person, with bokeh street background, realistic, 8k",
label="提示词",
info="生成图像的提示词",
value="photo of a person, with bokeh street background, realistic, 8k"
)
with gr.Row():
self.model_dropdown = gr.Dropdown(
label="预训练滑块",
choices= list(model_map.keys()),
value=['年龄调整'],
interactive=True,
multiselect=True # 允许多选
)
self.seed_infr = gr.Number(
label="种子值",
value=42753
)
self.slider_scale_infr = gr.Slider(
-4,
4,
label="滑块刻度",
value=3,
info="较大的滑块刻度会导致更强的编辑效果"
)
self.start_noise_infr = gr.Slider(
600, 900,
value=750,
label="SDEdit时间步",
info="选择较小的值以保持更多结构"
)
self.model_type = gr.Dropdown(
label="模型",
choices= ['SDXL Turbo', 'SDXL'],
value='SDXL Turbo',
interactive=True
)
with gr.Column(scale=2):
self.infr_button = gr.Button(
value="生成",
interactive=True
)
with gr.Row():
self.image_orig = gr.Image(
label="原始SD",
interactive=False,
type='pil',
)
self.image_new = gr.Image(
label=f"概念滑块",
interactive=False,
type='pil',
)
with gr.Tab("训练") as training_column:
with gr.Row():
self.explain_train= gr.Markdown(value='在这一部分,您可以为Stable Diffusion XL训练文本概念滑块。输入您希望进行编辑的目标概念(例如:人)。接下来,输入您希望编辑的属性的增强提示词(例如:控制人的年龄,输入“person, old”)。然后,输入属性的抑制提示词(例如:输入“person, young”)。然后按“训练”按钮。使用默认设置,训练一个滑块大约需要25分钟;然后您可以在上面的“测试”选项卡中尝试推理或下载权重。为了更快的训练,请复制此存储库并使用A100或更大的GPU进行训练。代码和详细信息在[github链接](https://github.com/rohitgandikota/sliders)。')
with gr.Row():
with gr.Column(scale=3):
self.target_concept = gr.Text(
placeholder="输入要进行编辑的目标概念...",
label="编辑概念的提示词",
info="对应于要编辑的概念的提示词(例如:“person”)",
value = ''
)
self.positive_prompt = gr.Text(
placeholder="输入编辑的增强提示词...",
label="增强提示词",
info="对应于要增强的概念的提示词(例如:“person, old”)",
value = ''
)
self.negative_prompt = gr.Text(
placeholder="输入编辑的抑制提示词...",
label="抑制提示词",
info="对应于要抑制的概念的提示词(例如:“person, young”)",
value = ''
)
self.attributes_input = gr.Text(
placeholder="输入要保留的概念(用逗号分隔)。如果不需要,请留空...",
label="要保留的概念",
info="要保留/解缠的概念(例如:“male, female”)",
value = ''
)
self.is_person = gr.Checkbox(
label="人",
info="您是否在为人训练滑块?")
self.rank = gr.Number(
value=4,
label="滑块等级",
info='要训练的滑块等级'
)
choices = ['xattn', 'noxattn']
self.train_method_input = gr.Dropdown(
choices=choices,
value='xattn',
label='训练方法',
info='训练方法。如果[* xattn *] - loras将仅在交叉注意层上。如果[* noxattn *](官方实现) - 除交叉注意层外的所有层',
interactive=True
)
self.iterations_input = gr.Number(
value=500,
precision=0,
label="迭代次数",
info='用于训练的迭代次数 - 最大为1000'
)
self.lr_input = gr.Number(
value=2e-4,
label="学习率",
info='用于训练的学习率'
)
with gr.Column(scale=1):
self.train_status = gr.Button(value='', variant='primary', interactive=False)
self.train_button = gr.Button(
value="训练",
)
self.download = gr.Files()
self.infr_button.click(self.inference, inputs = [
self.prompt_input_infr,
self.seed_infr,
self.start_noise_infr,
self.slider_scale_infr,
self.model_dropdown,
self.model_type
],
outputs=[
self.image_new,
self.image_orig
]
)
self.train_button.click(self.train, inputs = [
self.target_concept,
self.positive_prompt,
self.negative_prompt,
self.rank,
self.iterations_input,
self.lr_input,
self.attributes_input,
self.is_person,
self.train_method_input
],
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
)
def train(self, target_concept,positive_prompt, negative_prompt, rank, iterations_input, lr_input, attributes_input, is_person, train_method_input, pbar = gr.Progress(track_tqdm=True)):
iterations_input = min(int(iterations_input),1000)
if attributes_input == '':
attributes_input = None
print(target_concept, positive_prompt, negative_prompt, attributes_input, is_person)
randn = torch.randint(1, 10000000, (1,)).item()
save_name = f"{randn}_{positive_prompt.replace(',','').replace(' ','').replace('.','')[:20]}"
save_name += f'_alpha-{1}'
save_name += f'_{train_method_input}'
save_name += f'_rank_{int(rank)}.pt'
# if torch.cuda.get_device_properties(0).total_memory * 1e-9 < 40:
# return [gr.update(interactive=True, value='Train'), gr.update(value='GPU Memory is not enough for training... Please upgrade to GPU atleast 40GB or clone the repo to your local machine.'), None, gr.update()]
if self.training:
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
attributes = attributes_input
if is_person:
attributes = 'white, black, asian, hispanic, indian, male, female'
self.training = True
train_xl(target=target_concept, positive=positive_prompt, negative=negative_prompt, lr=lr_input, iterations=iterations_input, config_file='trainscripts/textsliders/data/config-xl.yaml', rank=int(rank), train_method=train_method_input, device=self.device, attributes=attributes, save_name=save_name)
self.training = False
torch.cuda.empty_cache()
model_map[save_name.replace('.pt','')] = f'models/{save_name}'
return [gr.update(interactive=True, value='Train'), gr.update(value='Done Training! \n Try your custom slider in the "Test" tab'), f'models/{save_name}', gr.update(choices=list(model_map.keys()), value=save_name.replace('.pt',''))]
def inference(self, prompt, seed, start_noise, scale, model_names, model, pbar = gr.Progress(track_tqdm=True)):
seed = seed or 42753
if self.current_model != model:
if model=='SDXL Turbo':
model_id = "stabilityai/sdxl-turbo"
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=euler_anc, torch_dtype=self.weight_dtype).to(self.device)
if torch.cuda.is_available():
self.pipe.enable_xformers_memory_efficient_attention()
self.guidance_scale = 1
self.num_inference_steps = 3
self.current_model = 'SDXL Turbo'
else:
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=self.weight_dtype).to(self.device)
if torch.cuda.is_available():
self.pipe.enable_xformers_memory_efficient_attention()
self.guidance_scale = 7.5
self.num_inference_steps = 20
self.current_model = 'SDXL'
generator = torch.manual_seed(seed)
networks = []
for model_name in model_names:
model_path = model_map[model_name]
unet = self.pipe.unet
network_type = "c3lier"
if 'full' in model_path:
train_method = 'full'
elif 'noxattn' in model_path:
train_method = 'noxattn'
elif 'xattn' in model_path:
train_method = 'xattn'
network_type = 'lierla'
else:
train_method = 'noxattn'
modules = DEFAULT_TARGET_REPLACE
if network_type == "c3lier":
modules += UNET_TARGET_REPLACE_MODULE_CONV
name = os.path.basename(model_path)
rank = 4
alpha = 1
if 'rank' in model_path:
rank = int(float(model_path.split('_')[-1].replace('.pt','')))
if 'alpha1' in model_path:
alpha = 1.0
network = LoRANetwork(
unet,
rank=rank,
multiplier=1.0,
alpha=alpha,
train_method=train_method,
).to(self.device, dtype=self.weight_dtype)
network.load_state_dict(torch.load(model_path))
networks.append(network)
__network__ = merge_lora_networks(networks)
generator = torch.manual_seed(seed)
edited_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=self.num_inference_steps, generator=generator, network=__network__, start_noise=int(start_noise), scale=float(scale), unet=unet, guidance_scale=self.guidance_scale).images[0]
generator = torch.manual_seed(seed)
original_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=self.num_inference_steps, generator=generator, network=__network__, start_noise=start_noise, scale=0, unet=unet, guidance_scale=self.guidance_scale).images[0]
del unet, networks
unet = None
networks = None
torch.cuda.empty_cache()
return edited_image, original_image
demo = Demo()
|