Spaces:
Sleeping
Sleeping
chore: 更新依赖项并优化网络合并功能
Browse files- app.py +17 -2
- install_deps.bat +2 -7
- requirements.txt +10 -11
- utils.bak +413 -0
- utils.py +17 -39
app.py
CHANGED
@@ -50,6 +50,19 @@ SHARED_UI_WARNING = f'''## 注意 - 在此共享UI中训练可能会很慢。您
|
|
50 |
'''
|
51 |
|
52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
class Demo:
|
54 |
|
55 |
def __init__(self) -> None:
|
@@ -354,12 +367,14 @@ class Demo:
|
|
354 |
).to(self.device, dtype=self.weight_dtype)
|
355 |
network.load_state_dict(torch.load(model_path))
|
356 |
networks.append(network)
|
|
|
|
|
357 |
|
358 |
generator = torch.manual_seed(seed)
|
359 |
-
edited_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=self.num_inference_steps, generator=generator,
|
360 |
|
361 |
generator = torch.manual_seed(seed)
|
362 |
-
original_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=self.num_inference_steps, generator=generator,
|
363 |
|
364 |
del unet, networks
|
365 |
unet = None
|
|
|
50 |
'''
|
51 |
|
52 |
|
53 |
+
def merge_lora_networks(networks):
|
54 |
+
if not networks:
|
55 |
+
return None
|
56 |
+
|
57 |
+
base_network = networks[0]
|
58 |
+
for network in networks[1:]:
|
59 |
+
for name, param in network.named_parameters():
|
60 |
+
if name in base_network.state_dict():
|
61 |
+
base_network.state_dict()[name].add_(param)
|
62 |
+
else:
|
63 |
+
base_network.state_dict()[name] = param.clone()
|
64 |
+
return base_network
|
65 |
+
|
66 |
class Demo:
|
67 |
|
68 |
def __init__(self) -> None:
|
|
|
367 |
).to(self.device, dtype=self.weight_dtype)
|
368 |
network.load_state_dict(torch.load(model_path))
|
369 |
networks.append(network)
|
370 |
+
|
371 |
+
__network__ = merge_lora_networks(networks)
|
372 |
|
373 |
generator = torch.manual_seed(seed)
|
374 |
+
edited_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=self.num_inference_steps, generator=generator, network=__network__, start_noise=int(start_noise), scale=float(scale), unet=unet, guidance_scale=self.guidance_scale).images[0]
|
375 |
|
376 |
generator = torch.manual_seed(seed)
|
377 |
+
original_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=self.num_inference_steps, generator=generator, network=__network__, start_noise=start_noise, scale=0, unet=unet, guidance_scale=self.guidance_scale).images[0]
|
378 |
|
379 |
del unet, networks
|
380 |
unet = None
|
install_deps.bat
CHANGED
@@ -1,7 +1,2 @@
|
|
1 |
-
pip install
|
2 |
-
pip install
|
3 |
-
pip install 'https://github.com/bitsandbytes-foundation/bitsandbytes/releases/download/continuous-release_multi-backend-refactor/bitsandbytes-0.44.1.dev0-py3-none-win_amd64.whl'
|
4 |
-
|
5 |
-
pip install -r requirements-win.txt
|
6 |
-
|
7 |
-
pip install --upgrade gradio
|
|
|
1 |
+
pip install -r requirements.txt
|
2 |
+
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cu118
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
bitsandbytes==0.41.1
|
2 |
dadaptation==3.1
|
3 |
-
diffusers==0.
|
4 |
ipython==8.7.0
|
5 |
lion_pytorch==0.1.2
|
6 |
lpips==0.1.4
|
@@ -11,17 +11,16 @@ opencv_python_headless==4.7.0.68
|
|
11 |
pandas==1.5.2
|
12 |
Pillow==10.1.0
|
13 |
prodigyopt==1.0
|
14 |
-
pydantic==
|
15 |
PyYAML==6.0.1
|
16 |
Requests==2.31.0
|
17 |
-
safetensors==0.
|
18 |
-
torch==2.
|
19 |
-
torchvision==0.
|
20 |
-
xformers
|
21 |
tqdm==4.64.1
|
22 |
-
transformers==4.
|
23 |
wandb==0.12.21
|
24 |
-
accelerate==
|
25 |
-
|
26 |
-
|
27 |
-
huggingface-hub==0.
|
|
|
1 |
bitsandbytes==0.41.1
|
2 |
dadaptation==3.1
|
3 |
+
diffusers==0.20.2
|
4 |
ipython==8.7.0
|
5 |
lion_pytorch==0.1.2
|
6 |
lpips==0.1.4
|
|
|
11 |
pandas==1.5.2
|
12 |
Pillow==10.1.0
|
13 |
prodigyopt==1.0
|
14 |
+
pydantic==1.10.3
|
15 |
PyYAML==6.0.1
|
16 |
Requests==2.31.0
|
17 |
+
safetensors==0.3.1
|
18 |
+
torch==2.0.1
|
19 |
+
torchvision==0.15.2
|
|
|
20 |
tqdm==4.64.1
|
21 |
+
transformers==4.27.4
|
22 |
wandb==0.12.21
|
23 |
+
accelerate==0.16.0
|
24 |
+
xformers
|
25 |
+
gradio
|
26 |
+
huggingface-hub==0.23.5
|
utils.bak
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image
|
3 |
+
import argparse
|
4 |
+
import os, json, random
|
5 |
+
import pandas as pd
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import glob, re
|
8 |
+
|
9 |
+
from safetensors.torch import load_file
|
10 |
+
import matplotlib.image as mpimg
|
11 |
+
import copy
|
12 |
+
import gc
|
13 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
14 |
+
|
15 |
+
import diffusers
|
16 |
+
from diffusers import DiffusionPipeline
|
17 |
+
from diffusers import AutoencoderKL, DDPMScheduler, DiffusionPipeline, UNet2DConditionModel, LMSDiscreteScheduler
|
18 |
+
from diffusers.loaders import AttnProcsLayers
|
19 |
+
from diffusers.models.attention_processor import LoRAAttnProcessor, AttentionProcessor
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
21 |
+
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput
|
22 |
+
|
23 |
+
import inspect
|
24 |
+
import os
|
25 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
26 |
+
from diffusers.pipelines import StableDiffusionXLPipeline
|
27 |
+
import random
|
28 |
+
|
29 |
+
import torch
|
30 |
+
from transformers import CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
|
31 |
+
|
32 |
+
def flush():
|
33 |
+
torch.cuda.empty_cache()
|
34 |
+
gc.collect()
|
35 |
+
|
36 |
+
@torch.no_grad()
|
37 |
+
def call(
|
38 |
+
self,
|
39 |
+
prompt: Union[str, List[str]] = None,
|
40 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
41 |
+
height: Optional[int] = None,
|
42 |
+
width: Optional[int] = None,
|
43 |
+
num_inference_steps: int = 50,
|
44 |
+
denoising_end: Optional[float] = None,
|
45 |
+
guidance_scale: float = 5.0,
|
46 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
47 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
48 |
+
num_images_per_prompt: Optional[int] = 1,
|
49 |
+
eta: float = 0.0,
|
50 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
51 |
+
latents: Optional[torch.FloatTensor] = None,
|
52 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
53 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
54 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
55 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
56 |
+
output_type: Optional[str] = "pil",
|
57 |
+
return_dict: bool = True,
|
58 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
59 |
+
callback_steps: int = 1,
|
60 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
61 |
+
guidance_rescale: float = 0.0,
|
62 |
+
original_size: Optional[Tuple[int, int]] = None,
|
63 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
64 |
+
target_size: Optional[Tuple[int, int]] = None,
|
65 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
66 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
67 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
68 |
+
|
69 |
+
network=None,
|
70 |
+
networks=None,
|
71 |
+
start_noise=None,
|
72 |
+
scale=None,
|
73 |
+
scales=None,
|
74 |
+
unet=None,
|
75 |
+
):
|
76 |
+
r"""
|
77 |
+
Function invoked when calling the pipeline for generation.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
prompt (`str` or `List[str]`, *optional*):
|
81 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
82 |
+
instead.
|
83 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
84 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
85 |
+
used in both text-encoders
|
86 |
+
height (`int`, *optional*, defaults to unet.config.sample_size * self.vae_scale_factor):
|
87 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
88 |
+
Anything below 512 pixels won't work well for
|
89 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
90 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
91 |
+
width (`int`, *optional*, defaults to unet.config.sample_size * self.vae_scale_factor):
|
92 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
93 |
+
Anything below 512 pixels won't work well for
|
94 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
95 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
96 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
97 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
98 |
+
expense of slower inference.
|
99 |
+
denoising_end (`float`, *optional*):
|
100 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
101 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
102 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
103 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
104 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
105 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
106 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
107 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
108 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
109 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
110 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
111 |
+
usually at the expense of lower image quality.
|
112 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
113 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
114 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
115 |
+
less than `1`).
|
116 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
117 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
118 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
119 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
120 |
+
The number of images to generate per prompt.
|
121 |
+
eta (`float`, *optional*, defaults to 0.0):
|
122 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
123 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
124 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
125 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
126 |
+
to make generation deterministic.
|
127 |
+
latents (`torch.FloatTensor`, *optional*):
|
128 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
129 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
130 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
131 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
132 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
133 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
134 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
135 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
136 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
137 |
+
argument.
|
138 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
139 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
140 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
141 |
+
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
142 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
143 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
144 |
+
input argument.
|
145 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
146 |
+
The output format of the generate image. Choose between
|
147 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
148 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
149 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
150 |
+
of a plain tuple.
|
151 |
+
callback (`Callable`, *optional*):
|
152 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
153 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
154 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
155 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
156 |
+
called at every step.
|
157 |
+
cross_attention_kwargs (`dict`, *optional*):
|
158 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
159 |
+
`self.processor` in
|
160 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
161 |
+
guidance_rescale (`float`, *optional*, defaults to 0.7):
|
162 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
163 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
164 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
165 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
166 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
167 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
168 |
+
`original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as
|
169 |
+
explained in section 2.2 of
|
170 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
171 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
172 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
173 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
174 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
175 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
176 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
177 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
178 |
+
not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in
|
179 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
180 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
181 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
182 |
+
micro-conditioning as explained in section 2.2 of
|
183 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
184 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
185 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
186 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
187 |
+
micro-conditioning as explained in section 2.2 of
|
188 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
189 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
190 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
191 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
192 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
193 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
194 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
195 |
+
|
196 |
+
Examples:
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
200 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
201 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
202 |
+
"""
|
203 |
+
# 0. Default height and width to unet
|
204 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
205 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
206 |
+
|
207 |
+
original_size = original_size or (height, width)
|
208 |
+
target_size = target_size or (height, width)
|
209 |
+
|
210 |
+
# 1. Check inputs. Raise error if not correct
|
211 |
+
self.check_inputs(
|
212 |
+
prompt,
|
213 |
+
prompt_2,
|
214 |
+
height,
|
215 |
+
width,
|
216 |
+
callback_steps,
|
217 |
+
negative_prompt,
|
218 |
+
negative_prompt_2,
|
219 |
+
prompt_embeds,
|
220 |
+
negative_prompt_embeds,
|
221 |
+
pooled_prompt_embeds,
|
222 |
+
negative_pooled_prompt_embeds,
|
223 |
+
)
|
224 |
+
|
225 |
+
# 2. Define call parameters
|
226 |
+
if prompt is not None and isinstance(prompt, str):
|
227 |
+
batch_size = 1
|
228 |
+
elif prompt is not None and isinstance(prompt, list):
|
229 |
+
batch_size = len(prompt)
|
230 |
+
else:
|
231 |
+
batch_size = prompt_embeds.shape[0]
|
232 |
+
|
233 |
+
device = self._execution_device
|
234 |
+
|
235 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
236 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
237 |
+
# corresponds to doing no classifier free guidance.
|
238 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
239 |
+
|
240 |
+
# 3. Encode input prompt
|
241 |
+
text_encoder_lora_scale = (
|
242 |
+
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
|
243 |
+
)
|
244 |
+
(
|
245 |
+
prompt_embeds,
|
246 |
+
negative_prompt_embeds,
|
247 |
+
pooled_prompt_embeds,
|
248 |
+
negative_pooled_prompt_embeds,
|
249 |
+
) = self.encode_prompt(
|
250 |
+
prompt=prompt,
|
251 |
+
prompt_2=prompt_2,
|
252 |
+
device=device,
|
253 |
+
num_images_per_prompt=num_images_per_prompt,
|
254 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
255 |
+
negative_prompt=negative_prompt,
|
256 |
+
negative_prompt_2=negative_prompt_2,
|
257 |
+
prompt_embeds=prompt_embeds,
|
258 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
259 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
260 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
261 |
+
lora_scale=text_encoder_lora_scale,
|
262 |
+
)
|
263 |
+
|
264 |
+
# 4. Prepare timesteps
|
265 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
266 |
+
|
267 |
+
timesteps = self.scheduler.timesteps
|
268 |
+
|
269 |
+
# 5. Prepare latent variables
|
270 |
+
num_channels_latents = unet.config.in_channels
|
271 |
+
latents = self.prepare_latents(
|
272 |
+
batch_size * num_images_per_prompt,
|
273 |
+
num_channels_latents,
|
274 |
+
height,
|
275 |
+
width,
|
276 |
+
prompt_embeds.dtype,
|
277 |
+
device,
|
278 |
+
generator,
|
279 |
+
latents,
|
280 |
+
)
|
281 |
+
|
282 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
283 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
284 |
+
|
285 |
+
# 7. Prepare added time ids & embeddings
|
286 |
+
add_text_embeds = pooled_prompt_embeds
|
287 |
+
# 确保 text_encoder_projection_dim 被正确初始化
|
288 |
+
if self.text_encoder_2 is None:
|
289 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
290 |
+
else:
|
291 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
292 |
+
add_time_ids = self._get_add_time_ids(
|
293 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype,
|
294 |
+
text_encoder_projection_dim=text_encoder_projection_dim
|
295 |
+
)
|
296 |
+
if negative_original_size is not None and negative_target_size is not None:
|
297 |
+
negative_add_time_ids = self._get_add_time_ids(
|
298 |
+
negative_original_size,
|
299 |
+
negative_crops_coords_top_left,
|
300 |
+
negative_target_size,
|
301 |
+
dtype=prompt_embeds.dtype,
|
302 |
+
text_encoder_projection_dim=text_encoder_projection_dim
|
303 |
+
)
|
304 |
+
else:
|
305 |
+
negative_add_time_ids = add_time_ids
|
306 |
+
|
307 |
+
if do_classifier_free_guidance:
|
308 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
309 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
310 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
311 |
+
|
312 |
+
prompt_embeds = prompt_embeds.to(device)
|
313 |
+
add_text_embeds = add_text_embeds.to(device)
|
314 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
315 |
+
|
316 |
+
|
317 |
+
# 8. Denoising loop
|
318 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
319 |
+
|
320 |
+
# 7.1 Apply denoising_end
|
321 |
+
if denoising_end is not None and isinstance(denoising_end, float) and denoising_end > 0 and denoising_end < 1:
|
322 |
+
discrete_timestep_cutoff = int(
|
323 |
+
round(
|
324 |
+
self.scheduler.config.num_train_timesteps
|
325 |
+
- (denoising_end * self.scheduler.config.num_train_timesteps)
|
326 |
+
)
|
327 |
+
)
|
328 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
329 |
+
timesteps = timesteps[:num_inference_steps]
|
330 |
+
latents = latents.to(unet.dtype)
|
331 |
+
|
332 |
+
# 统一处理 network,scale | 处理成 list
|
333 |
+
if network is not None:
|
334 |
+
networks = [network]
|
335 |
+
if scale is not None:
|
336 |
+
scales = [scale]
|
337 |
+
|
338 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
339 |
+
for i, t in enumerate(timesteps):
|
340 |
+
# 遍历所有网络,设置 scale
|
341 |
+
if networks is not None and scales is not None:
|
342 |
+
for _network, _scale in zip(networks, scales):
|
343 |
+
with _network:
|
344 |
+
_network.set_lora_slider(scale=0 if t > start_noise else float(_scale))
|
345 |
+
|
346 |
+
# expand the latents if we are doing classifier free guidance
|
347 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
348 |
+
|
349 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
350 |
+
|
351 |
+
# predict the noise residual
|
352 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
353 |
+
# 应用多个 LoRA 网络
|
354 |
+
if networks is not None and scales is not None:
|
355 |
+
for _network, _scale in zip(networks, scales):
|
356 |
+
with _network:
|
357 |
+
noise_pred = self.unet(
|
358 |
+
latent_model_input,
|
359 |
+
t,
|
360 |
+
encoder_hidden_states=prompt_embeds,
|
361 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
362 |
+
added_cond_kwargs=added_cond_kwargs,
|
363 |
+
return_dict=False,
|
364 |
+
)[0]
|
365 |
+
|
366 |
+
# perform guidance
|
367 |
+
if do_classifier_free_guidance:
|
368 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
369 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
370 |
+
|
371 |
+
if do_classifier_free_guidance and guidance_rescale > 0.0:
|
372 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
373 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
|
374 |
+
|
375 |
+
# compute the previous noisy sample x_t -> x_t-1
|
376 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
377 |
+
|
378 |
+
# call the callback, if provided
|
379 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
380 |
+
progress_bar.update()
|
381 |
+
if callback is not None and i % callback_steps == 0:
|
382 |
+
callback(i, t, latents)
|
383 |
+
|
384 |
+
if not output_type == "latent":
|
385 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
386 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
387 |
+
|
388 |
+
if needs_upcasting:
|
389 |
+
self.upcast_vae()
|
390 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
391 |
+
|
392 |
+
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
393 |
+
|
394 |
+
# cast back to fp16 if needed
|
395 |
+
if needs_upcasting:
|
396 |
+
self.vae.to(dtype=torch.float16)
|
397 |
+
else:
|
398 |
+
image = latents
|
399 |
+
|
400 |
+
if not output_type == "latent":
|
401 |
+
# apply watermark if available
|
402 |
+
if self.watermark is not None:
|
403 |
+
image = self.watermark.apply_watermark(image)
|
404 |
+
|
405 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
406 |
+
|
407 |
+
# Offload all models
|
408 |
+
# self.maybe_free_model_hooks()
|
409 |
+
|
410 |
+
if not return_dict:
|
411 |
+
return (image,)
|
412 |
+
|
413 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
utils.py
CHANGED
@@ -66,11 +66,9 @@ def call(
|
|
66 |
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
67 |
negative_target_size: Optional[Tuple[int, int]] = None,
|
68 |
|
69 |
-
network=None,
|
70 |
-
networks=None,
|
71 |
start_noise=None,
|
72 |
scale=None,
|
73 |
-
scales=None,
|
74 |
unet=None,
|
75 |
):
|
76 |
r"""
|
@@ -284,14 +282,8 @@ def call(
|
|
284 |
|
285 |
# 7. Prepare added time ids & embeddings
|
286 |
add_text_embeds = pooled_prompt_embeds
|
287 |
-
# 确保 text_encoder_projection_dim 被正确初始化
|
288 |
-
if self.text_encoder_2 is None:
|
289 |
-
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
290 |
-
else:
|
291 |
-
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
292 |
add_time_ids = self._get_add_time_ids(
|
293 |
-
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
294 |
-
text_encoder_projection_dim=text_encoder_projection_dim
|
295 |
)
|
296 |
if negative_original_size is not None and negative_target_size is not None:
|
297 |
negative_add_time_ids = self._get_add_time_ids(
|
@@ -299,7 +291,6 @@ def call(
|
|
299 |
negative_crops_coords_top_left,
|
300 |
negative_target_size,
|
301 |
dtype=prompt_embeds.dtype,
|
302 |
-
text_encoder_projection_dim=text_encoder_projection_dim
|
303 |
)
|
304 |
else:
|
305 |
negative_add_time_ids = add_time_ids
|
@@ -313,7 +304,6 @@ def call(
|
|
313 |
add_text_embeds = add_text_embeds.to(device)
|
314 |
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
315 |
|
316 |
-
|
317 |
# 8. Denoising loop
|
318 |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
319 |
|
@@ -328,21 +318,12 @@ def call(
|
|
328 |
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
329 |
timesteps = timesteps[:num_inference_steps]
|
330 |
latents = latents.to(unet.dtype)
|
331 |
-
|
332 |
-
# 统一处理 network,scale | 处理成 list
|
333 |
-
if network is not None:
|
334 |
-
networks = [network]
|
335 |
-
if scale is not None:
|
336 |
-
scales = [scale]
|
337 |
-
|
338 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
339 |
-
for i, t in enumerate(timesteps):
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
_network.set_lora_slider(scale=0 if t > start_noise else float(_scale))
|
345 |
-
|
346 |
# expand the latents if we are doing classifier free guidance
|
347 |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
348 |
|
@@ -350,18 +331,15 @@ def call(
|
|
350 |
|
351 |
# predict the noise residual
|
352 |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
added_cond_kwargs=added_cond_kwargs,
|
363 |
-
return_dict=False,
|
364 |
-
)[0]
|
365 |
|
366 |
# perform guidance
|
367 |
if do_classifier_free_guidance:
|
@@ -410,4 +388,4 @@ def call(
|
|
410 |
if not return_dict:
|
411 |
return (image,)
|
412 |
|
413 |
-
return StableDiffusionXLPipelineOutput(images=image)
|
|
|
66 |
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
67 |
negative_target_size: Optional[Tuple[int, int]] = None,
|
68 |
|
69 |
+
network=None,
|
|
|
70 |
start_noise=None,
|
71 |
scale=None,
|
|
|
72 |
unet=None,
|
73 |
):
|
74 |
r"""
|
|
|
282 |
|
283 |
# 7. Prepare added time ids & embeddings
|
284 |
add_text_embeds = pooled_prompt_embeds
|
|
|
|
|
|
|
|
|
|
|
285 |
add_time_ids = self._get_add_time_ids(
|
286 |
+
original_size, crops_coords_top_left, target_size, dtype=prompt_embeds.dtype
|
|
|
287 |
)
|
288 |
if negative_original_size is not None and negative_target_size is not None:
|
289 |
negative_add_time_ids = self._get_add_time_ids(
|
|
|
291 |
negative_crops_coords_top_left,
|
292 |
negative_target_size,
|
293 |
dtype=prompt_embeds.dtype,
|
|
|
294 |
)
|
295 |
else:
|
296 |
negative_add_time_ids = add_time_ids
|
|
|
304 |
add_text_embeds = add_text_embeds.to(device)
|
305 |
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
306 |
|
|
|
307 |
# 8. Denoising loop
|
308 |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
309 |
|
|
|
318 |
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
319 |
timesteps = timesteps[:num_inference_steps]
|
320 |
latents = latents.to(unet.dtype)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
322 |
+
for i, t in enumerate(timesteps):
|
323 |
+
if t>start_noise:
|
324 |
+
network.set_lora_slider(scale=0)
|
325 |
+
else:
|
326 |
+
network.set_lora_slider(scale=scale)
|
|
|
|
|
327 |
# expand the latents if we are doing classifier free guidance
|
328 |
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
329 |
|
|
|
331 |
|
332 |
# predict the noise residual
|
333 |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
334 |
+
with network:
|
335 |
+
noise_pred = unet(
|
336 |
+
latent_model_input,
|
337 |
+
t,
|
338 |
+
encoder_hidden_states=prompt_embeds,
|
339 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
340 |
+
added_cond_kwargs=added_cond_kwargs,
|
341 |
+
return_dict=False,
|
342 |
+
)[0]
|
|
|
|
|
|
|
343 |
|
344 |
# perform guidance
|
345 |
if do_classifier_free_guidance:
|
|
|
388 |
if not return_dict:
|
389 |
return (image,)
|
390 |
|
391 |
+
return StableDiffusionXLPipelineOutput(images=image)
|