Spaces:
Sleeping
Sleeping
chore: 实现多权重模型的叠加效果,允许选择多个权重模型
Browse files
app-v2.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
from utils import call
|
5 |
+
from diffusers import (
|
6 |
+
DDPMScheduler,
|
7 |
+
DDIMScheduler,
|
8 |
+
PNDMScheduler,
|
9 |
+
LMSDiscreteScheduler,
|
10 |
+
EulerAncestralDiscreteScheduler,
|
11 |
+
EulerDiscreteScheduler,
|
12 |
+
DPMSolverMultistepScheduler,
|
13 |
+
)
|
14 |
+
from diffusers.pipelines import StableDiffusionXLPipeline
|
15 |
+
StableDiffusionXLPipeline.__call__ = call
|
16 |
+
import os
|
17 |
+
from trainscripts.textsliders.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV
|
18 |
+
from trainscripts.textsliders.demotrain import train_xl
|
19 |
+
|
20 |
+
os.environ['CURL_CA_BUNDLE'] = ''
|
21 |
+
|
22 |
+
model_map = {
|
23 |
+
'年龄调整': 'models/age.pt',
|
24 |
+
'体型丰满': 'models/chubby.pt',
|
25 |
+
'肌肉感': 'models/muscular.pt',
|
26 |
+
'惊讶表情': 'models/suprised_look.pt',
|
27 |
+
'微笑': 'models/smiling.pt',
|
28 |
+
'职业感': 'models/professional.pt',
|
29 |
+
'长发': 'models/long_hair.pt',
|
30 |
+
'卷发': 'models/curlyhair.pt',
|
31 |
+
'Pixar风格': 'models/pixar_style.pt',
|
32 |
+
'雕塑风格': 'models/sculpture_style.pt',
|
33 |
+
'陶土风格': 'models/clay_style.pt',
|
34 |
+
'修复图像': 'models/repair_slider.pt',
|
35 |
+
'修复手部': 'models/fix_hands.pt',
|
36 |
+
'杂乱房间': 'models/cluttered_room.pt',
|
37 |
+
'阴暗天气': 'models/dark_weather.pt',
|
38 |
+
'节日氛围': 'models/festive.pt',
|
39 |
+
'热带天气': 'models/tropical_weather.pt',
|
40 |
+
'冬季天气': 'models/winter_weather.pt',
|
41 |
+
'弯眉': 'models/eyebrow.pt',
|
42 |
+
'眼睛大小 (使用刻度 -3, -1, 1, 3)': 'models/eyesize.pt',
|
43 |
+
}
|
44 |
+
|
45 |
+
ORIGINAL_SPACE_ID = 'baulab/ConceptSliders'
|
46 |
+
SPACE_ID = os.getenv('SPACE_ID')
|
47 |
+
|
48 |
+
SHARED_UI_WARNING = f'''## 注意 - 在此共享UI中训练可能会很慢。您可以选择复制并使用至少40GB GPU的设备,或克隆此存储库以在自己的机器上运行。
|
49 |
+
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-复制空间-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="复制空间"></a></center>
|
50 |
+
'''
|
51 |
+
|
52 |
+
def merge_lora_networks(networks):
|
53 |
+
if not networks:
|
54 |
+
return None
|
55 |
+
|
56 |
+
base_network = networks[0]
|
57 |
+
for network in networks[1:]:
|
58 |
+
for name, param in network.named_parameters():
|
59 |
+
if name in base_network.state_dict():
|
60 |
+
base_network.state_dict()[name].add_(param)
|
61 |
+
else:
|
62 |
+
base_network.state_dict()[name] = param.clone()
|
63 |
+
return base_network
|
64 |
+
|
65 |
+
# 修改 call 方法以支持传递 networks 参数
|
66 |
+
# def rw_sd_call(self, *args, networks=None, scales=None, **kwargs):
|
67 |
+
# if networks is not None and scales is not None:
|
68 |
+
# for network, scale in zip(networks, scales):
|
69 |
+
# for name, param in network.named_parameters():
|
70 |
+
# if name in self.unet.state_dict():
|
71 |
+
# self.unet.state_dict()[name].add_(param * scale)
|
72 |
+
# else:
|
73 |
+
# self.unet.state_dict()[name] = param.clone() * scale
|
74 |
+
# return self.__original_call__(*args, **kwargs)
|
75 |
+
|
76 |
+
# StableDiffusionXLPipeline.__original_call__ = StableDiffusionXLPipeline.__call__
|
77 |
+
# StableDiffusionXLPipeline.__call__ = rw_sd_call
|
78 |
+
|
79 |
+
class Demo:
|
80 |
+
|
81 |
+
def __init__(self) -> None:
|
82 |
+
|
83 |
+
self.training = False
|
84 |
+
self.generating = False
|
85 |
+
self.weight_dtype = torch.bfloat16
|
86 |
+
self.model_sections = []
|
87 |
+
|
88 |
+
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
|
89 |
+
if torch.cuda.is_available():
|
90 |
+
self.device = 'cuda'
|
91 |
+
else:
|
92 |
+
self.device = 'cpu'
|
93 |
+
|
94 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=self.weight_dtype).to(self.device)
|
95 |
+
pipe = None
|
96 |
+
del pipe
|
97 |
+
torch.cuda.empty_cache()
|
98 |
+
|
99 |
+
model_id = "stabilityai/sdxl-turbo"
|
100 |
+
self.current_model = 'SDXL Turbo'
|
101 |
+
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
102 |
+
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=euler_anc, torch_dtype=self.weight_dtype).to(self.device)
|
103 |
+
if torch.cuda.is_available():
|
104 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
105 |
+
|
106 |
+
self.guidance_scale = 1
|
107 |
+
self.num_inference_steps = 3
|
108 |
+
self.seed = 42753 # 默认种子值
|
109 |
+
|
110 |
+
with gr.Blocks() as demo:
|
111 |
+
self.layout()
|
112 |
+
demo.queue(max_size=5).launch(share=True, max_threads=2)
|
113 |
+
|
114 |
+
|
115 |
+
def layout(self):
|
116 |
+
# with gr.Row():
|
117 |
+
|
118 |
+
# if SPACE_ID == ORIGINAL_SPACE_ID:
|
119 |
+
|
120 |
+
# self.warning = gr.Markdown(SHARED_UI_WARNING)
|
121 |
+
|
122 |
+
# with gr.Row():
|
123 |
+
|
124 |
+
with gr.Tab("测试") as inference_column:
|
125 |
+
|
126 |
+
with gr.Row():
|
127 |
+
|
128 |
+
self.explain_infr = gr.Markdown(value='这是[概念滑块:用于扩散模型的LoRA适配器](https://sliders.baulab.info/)的演示。要尝试可以控制特定概念的模型,请选择一个模型并输入任何提示词,选择一个种子值,最后选择SDEdit时间步以保持结构。较高的SDEdit时间步会导致更多的结构变化。例如,如果选择“惊讶表情”模型,可以生成提示词“A picture of a person, realistic, 8k”的图像,并将滑块效果与原始模型生成的图像进行比较。我们还提供了几个其他预先微调的模型,如“修复”滑块,用于修复SDXL生成图像中的缺陷(请查看“预训练滑块”下拉菜单)。您还可以训练和运行自己的自定义滑块。请查看“训练”部分以进行自定义概念滑块训练。<b>当前推理正在运行SDXL Turbo!</b>')
|
129 |
+
|
130 |
+
with gr.Row():
|
131 |
+
|
132 |
+
self.prompt_input_infr = gr.Text(
|
133 |
+
placeholder="photo of a person, with bokeh street background, realistic, 8k",
|
134 |
+
label="提示词",
|
135 |
+
info="生成图像的提示词",
|
136 |
+
value="photo of a person, with bokeh street background, realistic, 8k"
|
137 |
+
)
|
138 |
+
|
139 |
+
for model_name in model_map.keys():
|
140 |
+
with gr.Row():
|
141 |
+
model_checkbox = gr.Checkbox(label=model_name, value=False)
|
142 |
+
slider_scale_infr = gr.Slider(-4, 4, label="滑块刻度", value=3, info="较大的滑块刻度会导致更强的编辑效果")
|
143 |
+
self.model_sections.append(((model_checkbox.label, model_checkbox.value), slider_scale_infr.value))
|
144 |
+
|
145 |
+
# 添加复选框的change事件处理程序
|
146 |
+
model_checkbox.change(
|
147 |
+
fn=self.update_model_sections,
|
148 |
+
inputs=[gr.Text(value=f"{model_checkbox.label}"), model_checkbox, slider_scale_infr],
|
149 |
+
outputs=[]
|
150 |
+
)
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
self.seed_infr = gr.Number(label="种子值", value=self.seed)
|
154 |
+
self.start_noise_infr = gr.Slider(
|
155 |
+
600, 900,
|
156 |
+
value=750,
|
157 |
+
label="SDEdit时间步",
|
158 |
+
info="选择较小的值以保持更多结构"
|
159 |
+
)
|
160 |
+
self.model_type = gr.Dropdown(
|
161 |
+
label="模型",
|
162 |
+
choices=['SDXL Turbo', 'SDXL'],
|
163 |
+
value='SDXL Turbo',
|
164 |
+
interactive=True
|
165 |
+
)
|
166 |
+
|
167 |
+
with gr.Row():
|
168 |
+
self.infr_button = gr.Button(
|
169 |
+
value="生成",
|
170 |
+
interactive=True
|
171 |
+
)
|
172 |
+
|
173 |
+
with gr.Row():
|
174 |
+
self.image_orig = gr.Image(
|
175 |
+
label="原始SD",
|
176 |
+
interactive=False,
|
177 |
+
type='pil',
|
178 |
+
)
|
179 |
+
|
180 |
+
self.image_new = gr.Image(
|
181 |
+
label=f"概念滑块",
|
182 |
+
interactive=False,
|
183 |
+
type='pil',
|
184 |
+
)
|
185 |
+
|
186 |
+
with gr.Tab("训练") as training_column:
|
187 |
+
|
188 |
+
with gr.Row():
|
189 |
+
|
190 |
+
self.explain_train= gr.Markdown(value='在这一部分,您可以为Stable Diffusion XL训练文本概念滑块。输入您希望进行编辑的目标概念(例如:人)。接下来,输入您希望编辑的属性的增强提示词(例如:控制人的年龄,输入“person, old”)。然后,输入属性的抑制提示词(例如:输入“person, young”)。然后按“训练”按钮。使用默认设置,训练一个滑块大约需要25分钟;然后您可以在上面的“测试”选项卡中尝试推理或下载权重。为了更快的训练,请复制此存储库并使用A100或更大的GPU进行训练。代码和详细信息在[github链接](https://github.com/rohitgandikota/sliders)。')
|
191 |
+
|
192 |
+
with gr.Row():
|
193 |
+
|
194 |
+
with gr.Column(scale=3):
|
195 |
+
|
196 |
+
self.target_concept = gr.Text(
|
197 |
+
placeholder="输入要进行编辑的目标概念...",
|
198 |
+
label="编辑概念的提示词",
|
199 |
+
info="对应于要编辑的概念的提示词(例如:“person”)",
|
200 |
+
value = ''
|
201 |
+
)
|
202 |
+
|
203 |
+
self.positive_prompt = gr.Text(
|
204 |
+
placeholder="输入编辑的增强提示词...",
|
205 |
+
label="增强���示词",
|
206 |
+
info="对应于要增强的概念的提示词(例如:“person, old”)",
|
207 |
+
value = ''
|
208 |
+
)
|
209 |
+
|
210 |
+
self.negative_prompt = gr.Text(
|
211 |
+
placeholder="输入编辑的抑制提示词...",
|
212 |
+
label="抑制提示词",
|
213 |
+
info="对应于要抑制的概念的提示词(例如:“person, young”)",
|
214 |
+
value = ''
|
215 |
+
)
|
216 |
+
|
217 |
+
self.attributes_input = gr.Text(
|
218 |
+
placeholder="输入要保留的概念(用逗号分隔)。如果不需要,请留空...",
|
219 |
+
label="要保留的概念",
|
220 |
+
info="要保留/解缠的概念(例如:“male, female”)",
|
221 |
+
value = ''
|
222 |
+
)
|
223 |
+
self.is_person = gr.Checkbox(
|
224 |
+
label="人",
|
225 |
+
info="您是否在为人训练滑块?")
|
226 |
+
|
227 |
+
self.rank = gr.Number(
|
228 |
+
value=4,
|
229 |
+
label="滑块等级",
|
230 |
+
info='要训练的滑块等级'
|
231 |
+
)
|
232 |
+
choices = ['xattn', 'noxattn']
|
233 |
+
self.train_method_input = gr.Dropdown(
|
234 |
+
choices=choices,
|
235 |
+
value='xattn',
|
236 |
+
label='训练方法',
|
237 |
+
info='训练方法。如果[* xattn *] - loras将仅在交叉注意层上。如果[* noxattn *](官方实现) - 除交叉注意层外的所有层',
|
238 |
+
interactive=True
|
239 |
+
)
|
240 |
+
self.iterations_input = gr.Number(
|
241 |
+
value=500,
|
242 |
+
precision=0,
|
243 |
+
label="迭代次数",
|
244 |
+
info='用于训练的迭代次数 - 最大为1000'
|
245 |
+
)
|
246 |
+
|
247 |
+
self.lr_input = gr.Number(
|
248 |
+
value=2e-4,
|
249 |
+
label="学习率",
|
250 |
+
info='用于训练的学习率'
|
251 |
+
)
|
252 |
+
|
253 |
+
with gr.Column(scale=1):
|
254 |
+
|
255 |
+
self.train_status = gr.Button(value='', variant='primary', interactive=False)
|
256 |
+
|
257 |
+
self.train_button = gr.Button(
|
258 |
+
value="训练",
|
259 |
+
)
|
260 |
+
|
261 |
+
self.download = gr.Files()
|
262 |
+
self.model_dropdown = gr.Dropdown(choices=list(model_map.keys()))
|
263 |
+
|
264 |
+
self.infr_button.click(self.inference, inputs=[
|
265 |
+
self.prompt_input_infr,
|
266 |
+
self.start_noise_infr,
|
267 |
+
self.model_type,
|
268 |
+
self.seed_infr
|
269 |
+
],
|
270 |
+
outputs=[
|
271 |
+
self.image_new,
|
272 |
+
self.image_orig
|
273 |
+
]
|
274 |
+
)
|
275 |
+
self.train_button.click(self.train, inputs = [
|
276 |
+
self.target_concept,
|
277 |
+
self.positive_prompt,
|
278 |
+
self.negative_prompt,
|
279 |
+
self.rank,
|
280 |
+
self.iterations_input,
|
281 |
+
self.lr_input,
|
282 |
+
self.attributes_input,
|
283 |
+
self.is_person,
|
284 |
+
self.train_method_input
|
285 |
+
],
|
286 |
+
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
|
287 |
+
)
|
288 |
+
|
289 |
+
def update_model_sections(self, label, checkbox, scale):
|
290 |
+
for i, section in enumerate(self.model_sections):
|
291 |
+
if section[0][0] == label:
|
292 |
+
self.model_sections[i] = ((label, checkbox), scale)
|
293 |
+
break
|
294 |
+
|
295 |
+
def train(self, target_concept,positive_prompt, negative_prompt, rank, iterations_input, lr_input, attributes_input, is_person, train_method_input, pbar = gr.Progress(track_tqdm=True)):
|
296 |
+
iterations_input = min(int(iterations_input),1000)
|
297 |
+
if attributes_input == '':
|
298 |
+
attributes_input = None
|
299 |
+
print(target_concept, positive_prompt, negative_prompt, attributes_input, is_person)
|
300 |
+
|
301 |
+
randn = torch.randint(1, 10000000, (1,)).item()
|
302 |
+
save_name = f"{randn}_{positive_prompt.replace(',','').replace(' ','').replace('.','')[:20]}"
|
303 |
+
save_name += f'_alpha-{1}'
|
304 |
+
save_name += f'_{train_method_input}'
|
305 |
+
save_name += f'_rank_{int(rank)}.pt'
|
306 |
+
|
307 |
+
# if torch.cuda.get_device_properties(0).total_memory * 1e-9 < 40:
|
308 |
+
# return [gr.update(interactive=True, value='Train'), gr.update(value='GPU Memory is not enough for training... Please upgrade to GPU atleast 40GB or clone the repo to your local machine.'), None, gr.update()]
|
309 |
+
if self.training:
|
310 |
+
return [gr.update(interactive=True, value='Train'), gr.update(value='Someone else is training... Try again soon'), None, gr.update()]
|
311 |
+
|
312 |
+
attributes = attributes_input
|
313 |
+
if is_person:
|
314 |
+
attributes = 'white, black, asian, hispanic, indian, male, female'
|
315 |
+
|
316 |
+
self.training = True
|
317 |
+
train_xl(target=target_concept, positive=positive_prompt, negative=negative_prompt, lr=lr_input, iterations=iterations_input, config_file='trainscripts/textsliders/data/config-xl.yaml', rank=int(rank), train_method=train_method_input, device=self.device, attributes=attributes, save_name=save_name)
|
318 |
+
self.training = False
|
319 |
+
|
320 |
+
torch.cuda.empty_cache()
|
321 |
+
model_map[save_name.replace('.pt','')] = f'models/{save_name}'
|
322 |
+
|
323 |
+
return [gr.update(interactive=True, value='Train'), gr.update(value='Done Training! \n Try your custom slider in the "Test" tab'), f'models/{save_name}', gr.update(choices=list(model_map.keys()), value=save_name.replace('.pt',''))]
|
324 |
+
|
325 |
+
def get_selected_models(self):
|
326 |
+
# 过滤出被选中的模型数据
|
327 |
+
selected = [
|
328 |
+
(section[0][0], section[1]) # (label, scale)
|
329 |
+
for section in self.model_sections
|
330 |
+
if section[0][1] # 检查 checkbox value 是否为 True
|
331 |
+
]
|
332 |
+
|
333 |
+
if selected:
|
334 |
+
# 解包成两个数组
|
335 |
+
labels, scales = zip(*selected)
|
336 |
+
return list(labels), list(scales)
|
337 |
+
else:
|
338 |
+
return [], []
|
339 |
+
|
340 |
+
def inference(self, prompt, start_noise, model, seed, pbar=gr.Progress(track_tqdm=True)):
|
341 |
+
self.seed = seed # 更新种子值
|
342 |
+
result = self.get_selected_models()
|
343 |
+
print(111, self.model_sections)
|
344 |
+
model_names, scale_list = result
|
345 |
+
print(222, model_names, scale_list)
|
346 |
+
|
347 |
+
if self.current_model != model:
|
348 |
+
if model=='SDXL Turbo':
|
349 |
+
model_id = "stabilityai/sdxl-turbo"
|
350 |
+
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
351 |
+
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=euler_anc, torch_dtype=self.weight_dtype).to(self.device)
|
352 |
+
if torch.cuda.is_available():
|
353 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
354 |
+
self.guidance_scale = 1
|
355 |
+
self.num_inference_steps = 3
|
356 |
+
self.current_model = 'SDXL Turbo'
|
357 |
+
else:
|
358 |
+
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
|
359 |
+
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=self.weight_dtype).to(self.device)
|
360 |
+
if torch.cuda.is_available():
|
361 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
362 |
+
self.guidance_scale = 7.5
|
363 |
+
self.num_inference_steps = 20
|
364 |
+
self.current_model = 'SDXL'
|
365 |
+
|
366 |
+
networks = []
|
367 |
+
for model_name in model_names:
|
368 |
+
model_path = model_map[model_name]
|
369 |
+
unet = self.pipe.unet
|
370 |
+
network_type = "c3lier"
|
371 |
+
if 'full' in model_path:
|
372 |
+
train_method = 'full'
|
373 |
+
elif 'noxattn' in model_path:
|
374 |
+
train_method = 'noxattn'
|
375 |
+
elif 'xattn' in model_path:
|
376 |
+
train_method = 'xattn'
|
377 |
+
network_type = 'lierla'
|
378 |
+
else:
|
379 |
+
train_method = 'noxattn'
|
380 |
+
|
381 |
+
modules = DEFAULT_TARGET_REPLACE
|
382 |
+
if network_type == "c3lier":
|
383 |
+
modules += UNET_TARGET_REPLACE_MODULE_CONV
|
384 |
+
|
385 |
+
name = os.path.basename(model_path)
|
386 |
+
rank = 4
|
387 |
+
alpha = 1
|
388 |
+
if 'rank' in model_path:
|
389 |
+
rank = int(float(model_path.split('_')[-1].replace('.pt','')))
|
390 |
+
if 'alpha1' in model_path:
|
391 |
+
alpha = 1.0
|
392 |
+
network = LoRANetwork(
|
393 |
+
unet,
|
394 |
+
rank=rank,
|
395 |
+
multiplier=1.0,
|
396 |
+
alpha=alpha,
|
397 |
+
train_method=train_method,
|
398 |
+
).to(self.device, dtype=self.weight_dtype)
|
399 |
+
network.load_state_dict(torch.load(model_path, weights_only=True))
|
400 |
+
networks.append(network)
|
401 |
+
|
402 |
+
# 设置种子
|
403 |
+
generator = torch.manual_seed(self.seed)
|
404 |
+
# 生成编辑后的图像(应用多权重)
|
405 |
+
edited_image = self.pipe(
|
406 |
+
prompt,
|
407 |
+
num_images_per_prompt=1,
|
408 |
+
num_inference_steps=self.num_inference_steps,
|
409 |
+
generator=generator,
|
410 |
+
networks=networks, # 加载多个 LoRA 模型
|
411 |
+
start_noise=int(start_noise),
|
412 |
+
scales=scale_list, # 设置每个 LoRA 的权重
|
413 |
+
unet=unet,
|
414 |
+
guidance_scale=self.guidance_scale
|
415 |
+
).images[0]
|
416 |
+
|
417 |
+
# 生成原始图像(不应用权重)
|
418 |
+
generator = torch.manual_seed(self.seed)
|
419 |
+
original_image = self.pipe(
|
420 |
+
prompt,
|
421 |
+
num_images_per_prompt=1,
|
422 |
+
num_inference_steps=self.num_inference_steps,
|
423 |
+
generator=generator,
|
424 |
+
networks=networks,
|
425 |
+
start_noise=int(start_noise),
|
426 |
+
scales=[0] * len(networks), # 不设置任何权重
|
427 |
+
unet=unet,
|
428 |
+
guidance_scale=self.guidance_scale
|
429 |
+
).images[0]
|
430 |
+
|
431 |
+
del unet, networks
|
432 |
+
unet = None
|
433 |
+
networks = None
|
434 |
+
torch.cuda.empty_cache()
|
435 |
+
|
436 |
+
return edited_image, original_image
|
437 |
+
|
438 |
+
demo = Demo()
|
app.py
CHANGED
@@ -49,32 +49,6 @@ SHARED_UI_WARNING = f'''## 注意 - 在此共享UI中训练可能会很慢。您
|
|
49 |
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-复制空间-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="复制空间"></a></center>
|
50 |
'''
|
51 |
|
52 |
-
def merge_lora_networks(networks):
|
53 |
-
if not networks:
|
54 |
-
return None
|
55 |
-
|
56 |
-
base_network = networks[0]
|
57 |
-
for network in networks[1:]:
|
58 |
-
for name, param in network.named_parameters():
|
59 |
-
if name in base_network.state_dict():
|
60 |
-
base_network.state_dict()[name].add_(param)
|
61 |
-
else:
|
62 |
-
base_network.state_dict()[name] = param.clone()
|
63 |
-
return base_network
|
64 |
-
|
65 |
-
# 修改 call 方法以支持传递 networks 参数
|
66 |
-
# def rw_sd_call(self, *args, networks=None, scales=None, **kwargs):
|
67 |
-
# if networks is not None and scales is not None:
|
68 |
-
# for network, scale in zip(networks, scales):
|
69 |
-
# for name, param in network.named_parameters():
|
70 |
-
# if name in self.unet.state_dict():
|
71 |
-
# self.unet.state_dict()[name].add_(param * scale)
|
72 |
-
# else:
|
73 |
-
# self.unet.state_dict()[name] = param.clone() * scale
|
74 |
-
# return self.__original_call__(*args, **kwargs)
|
75 |
-
|
76 |
-
# StableDiffusionXLPipeline.__original_call__ = StableDiffusionXLPipeline.__call__
|
77 |
-
# StableDiffusionXLPipeline.__call__ = rw_sd_call
|
78 |
|
79 |
class Demo:
|
80 |
|
@@ -82,15 +56,10 @@ class Demo:
|
|
82 |
|
83 |
self.training = False
|
84 |
self.generating = False
|
|
|
85 |
self.weight_dtype = torch.bfloat16
|
86 |
-
self.model_sections = []
|
87 |
|
88 |
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
|
89 |
-
if torch.cuda.is_available():
|
90 |
-
self.device = 'cuda'
|
91 |
-
else:
|
92 |
-
self.device = 'cpu'
|
93 |
-
|
94 |
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=self.weight_dtype).to(self.device)
|
95 |
pipe = None
|
96 |
del pipe
|
@@ -100,12 +69,10 @@ class Demo:
|
|
100 |
self.current_model = 'SDXL Turbo'
|
101 |
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
102 |
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=euler_anc, torch_dtype=self.weight_dtype).to(self.device)
|
103 |
-
|
104 |
-
self.pipe.enable_xformers_memory_efficient_attention()
|
105 |
|
106 |
self.guidance_scale = 1
|
107 |
self.num_inference_steps = 3
|
108 |
-
self.seed = 42753 # 默认种子值
|
109 |
|
110 |
with gr.Blocks() as demo:
|
111 |
self.layout()
|
@@ -113,159 +80,173 @@ class Demo:
|
|
113 |
|
114 |
|
115 |
def layout(self):
|
116 |
-
# with gr.Row():
|
117 |
|
118 |
-
|
|
|
|
|
119 |
|
120 |
-
|
121 |
|
122 |
-
|
123 |
|
124 |
-
|
125 |
|
126 |
-
|
127 |
|
128 |
-
|
129 |
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
self.prompt_input_infr = gr.Text(
|
133 |
-
placeholder="photo of a person, with bokeh street background, realistic, 8k",
|
134 |
-
label="提示词",
|
135 |
-
info="生成图像的提示词",
|
136 |
-
value="photo of a person, with bokeh street background, realistic, 8k"
|
137 |
-
)
|
138 |
-
|
139 |
-
for model_name in model_map.keys():
|
140 |
with gr.Row():
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
self.attributes_input = gr.Text(
|
218 |
-
placeholder="输入要保留的概念(用逗号分隔)。如果不需要,请留空...",
|
219 |
-
label="要保留的概念",
|
220 |
-
info="要保留/解缠的概念(例如:“male, female”)",
|
221 |
-
value = ''
|
222 |
-
)
|
223 |
-
self.is_person = gr.Checkbox(
|
224 |
-
label="人",
|
225 |
-
info="您是否在为人训练滑块?")
|
226 |
-
|
227 |
-
self.rank = gr.Number(
|
228 |
-
value=4,
|
229 |
-
label="滑块等级",
|
230 |
-
info='要训练的滑块等级'
|
231 |
-
)
|
232 |
-
choices = ['xattn', 'noxattn']
|
233 |
-
self.train_method_input = gr.Dropdown(
|
234 |
-
choices=choices,
|
235 |
-
value='xattn',
|
236 |
-
label='训练方法',
|
237 |
-
info='训练方法。如果[* xattn *] - loras将仅在交叉注意层上。如果[* noxattn *](官方实现) - 除交叉注意层外的所有层',
|
238 |
-
interactive=True
|
239 |
-
)
|
240 |
-
self.iterations_input = gr.Number(
|
241 |
-
value=500,
|
242 |
-
precision=0,
|
243 |
-
label="迭代次数",
|
244 |
-
info='用于训练的迭代次数 - 最大为1000'
|
245 |
-
)
|
246 |
-
|
247 |
-
self.lr_input = gr.Number(
|
248 |
-
value=2e-4,
|
249 |
-
label="学习率",
|
250 |
-
info='用于训练的学习率'
|
251 |
-
)
|
252 |
-
|
253 |
-
with gr.Column(scale=1):
|
254 |
-
|
255 |
-
self.train_status = gr.Button(value='', variant='primary', interactive=False)
|
256 |
-
|
257 |
-
self.train_button = gr.Button(
|
258 |
-
value="训练",
|
259 |
-
)
|
260 |
-
|
261 |
-
self.download = gr.Files()
|
262 |
-
self.model_dropdown = gr.Dropdown(choices=list(model_map.keys()))
|
263 |
-
|
264 |
-
self.infr_button.click(self.inference, inputs=[
|
265 |
self.prompt_input_infr,
|
|
|
266 |
self.start_noise_infr,
|
267 |
-
self.
|
268 |
-
self.
|
|
|
269 |
],
|
270 |
outputs=[
|
271 |
self.image_new,
|
@@ -286,12 +267,6 @@ class Demo:
|
|
286 |
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
|
287 |
)
|
288 |
|
289 |
-
def update_model_sections(self, label, checkbox, scale):
|
290 |
-
for i, section in enumerate(self.model_sections):
|
291 |
-
if section[0][0] == label:
|
292 |
-
self.model_sections[i] = ((label, checkbox), scale)
|
293 |
-
break
|
294 |
-
|
295 |
def train(self, target_concept,positive_prompt, negative_prompt, rank, iterations_input, lr_input, attributes_input, is_person, train_method_input, pbar = gr.Progress(track_tqdm=True)):
|
296 |
iterations_input = min(int(iterations_input),1000)
|
297 |
if attributes_input == '':
|
@@ -322,47 +297,28 @@ class Demo:
|
|
322 |
|
323 |
return [gr.update(interactive=True, value='Train'), gr.update(value='Done Training! \n Try your custom slider in the "Test" tab'), f'models/{save_name}', gr.update(choices=list(model_map.keys()), value=save_name.replace('.pt',''))]
|
324 |
|
325 |
-
def get_selected_models(self):
|
326 |
-
# 过滤出被选中的模型数据
|
327 |
-
selected = [
|
328 |
-
(section[0][0], section[1]) # (label, scale)
|
329 |
-
for section in self.model_sections
|
330 |
-
if section[0][1] # 检查 checkbox value 是否为 True
|
331 |
-
]
|
332 |
-
|
333 |
-
if selected:
|
334 |
-
# 解包成两个数组
|
335 |
-
labels, scales = zip(*selected)
|
336 |
-
return list(labels), list(scales)
|
337 |
-
else:
|
338 |
-
return [], []
|
339 |
|
340 |
-
def inference(self, prompt, start_noise,
|
341 |
-
|
342 |
-
|
343 |
-
print(111, self.model_sections)
|
344 |
-
model_names, scale_list = result
|
345 |
-
print(222, model_names, scale_list)
|
346 |
-
|
347 |
if self.current_model != model:
|
348 |
if model=='SDXL Turbo':
|
349 |
model_id = "stabilityai/sdxl-turbo"
|
350 |
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
351 |
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=euler_anc, torch_dtype=self.weight_dtype).to(self.device)
|
352 |
-
|
353 |
-
self.pipe.enable_xformers_memory_efficient_attention()
|
354 |
self.guidance_scale = 1
|
355 |
self.num_inference_steps = 3
|
356 |
self.current_model = 'SDXL Turbo'
|
357 |
else:
|
358 |
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
|
359 |
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=self.weight_dtype).to(self.device)
|
360 |
-
|
361 |
-
self.pipe.enable_xformers_memory_efficient_attention()
|
362 |
self.guidance_scale = 7.5
|
363 |
self.num_inference_steps = 20
|
364 |
self.current_model = 'SDXL'
|
365 |
-
|
|
|
366 |
networks = []
|
367 |
for model_name in model_names:
|
368 |
model_path = model_map[model_name]
|
@@ -390,43 +346,20 @@ class Demo:
|
|
390 |
if 'alpha1' in model_path:
|
391 |
alpha = 1.0
|
392 |
network = LoRANetwork(
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
network.load_state_dict(torch.load(model_path
|
400 |
networks.append(network)
|
401 |
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
num_images_per_prompt=1,
|
408 |
-
num_inference_steps=self.num_inference_steps,
|
409 |
-
generator=generator,
|
410 |
-
networks=networks, # 加载多个 LoRA 模型
|
411 |
-
start_noise=int(start_noise),
|
412 |
-
scales=scale_list, # 设置每个 LoRA 的权重
|
413 |
-
unet=unet,
|
414 |
-
guidance_scale=self.guidance_scale
|
415 |
-
).images[0]
|
416 |
-
|
417 |
-
# 生成原始图像(不应用权重)
|
418 |
-
generator = torch.manual_seed(self.seed)
|
419 |
-
original_image = self.pipe(
|
420 |
-
prompt,
|
421 |
-
num_images_per_prompt=1,
|
422 |
-
num_inference_steps=self.num_inference_steps,
|
423 |
-
generator=generator,
|
424 |
-
networks=networks,
|
425 |
-
start_noise=int(start_noise),
|
426 |
-
scales=[0] * len(networks), # 不设置任何权重
|
427 |
-
unet=unet,
|
428 |
-
guidance_scale=self.guidance_scale
|
429 |
-
).images[0]
|
430 |
|
431 |
del unet, networks
|
432 |
unet = None
|
|
|
49 |
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="margin-top:0;margin-bottom:0" src="https://img.shields.io/badge/-复制空间-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="复制空间"></a></center>
|
50 |
'''
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
class Demo:
|
54 |
|
|
|
56 |
|
57 |
self.training = False
|
58 |
self.generating = False
|
59 |
+
self.device = 'cuda'
|
60 |
self.weight_dtype = torch.bfloat16
|
|
|
61 |
|
62 |
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
|
|
|
|
|
|
|
|
|
|
|
63 |
pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=self.weight_dtype).to(self.device)
|
64 |
pipe = None
|
65 |
del pipe
|
|
|
69 |
self.current_model = 'SDXL Turbo'
|
70 |
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
71 |
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=euler_anc, torch_dtype=self.weight_dtype).to(self.device)
|
72 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
|
|
73 |
|
74 |
self.guidance_scale = 1
|
75 |
self.num_inference_steps = 3
|
|
|
76 |
|
77 |
with gr.Blocks() as demo:
|
78 |
self.layout()
|
|
|
80 |
|
81 |
|
82 |
def layout(self):
|
|
|
83 |
|
84 |
+
with gr.Row():
|
85 |
+
|
86 |
+
if SPACE_ID == ORIGINAL_SPACE_ID:
|
87 |
|
88 |
+
self.warning = gr.Markdown(SHARED_UI_WARNING)
|
89 |
|
90 |
+
with gr.Row():
|
91 |
|
92 |
+
with gr.Tab("测试") as inference_column:
|
93 |
|
94 |
+
with gr.Row():
|
95 |
|
96 |
+
self.explain_infr = gr.Markdown(value='这是[概念滑块:用于扩散模型的LoRA适配器](https://sliders.baulab.info/)的演示。要尝试可以控制特定概念的模型,请选择一个模型并输入任何提示词,选择一个种子值,最后选择SDEdit时间步以保持结构。较高的SDEdit��间步会导致更多的结构变化。例如,如果选择“惊讶表情”模型,可以生成提示词“A picture of a person, realistic, 8k”的图像,并将滑块效果与原始模型生成的图像进行比较。我们还提供了几个其他预先微调的模型,如“修复”滑块,用于修复SDXL生成图像中的缺陷(请查看“预训练滑块”下拉菜单)。您还可以训练和运行自己的自定义滑块。请查看“训练”部分以进行自定义概念滑块训练。<b>当前推理正在运行SDXL Turbo!</b>')
|
97 |
|
98 |
+
with gr.Row():
|
99 |
+
|
100 |
+
with gr.Column(scale=1):
|
101 |
+
|
102 |
+
self.prompt_input_infr = gr.Text(
|
103 |
+
placeholder="photo of a person, with bokeh street background, realistic, 8k",
|
104 |
+
label="提示词",
|
105 |
+
info="生成图像的提示词",
|
106 |
+
value="photo of a person, with bokeh street background, realistic, 8k"
|
107 |
+
)
|
108 |
+
|
109 |
+
with gr.Row():
|
110 |
+
|
111 |
+
self.model_dropdown = gr.Dropdown(
|
112 |
+
label="预训练滑块",
|
113 |
+
choices= list(model_map.keys()),
|
114 |
+
value=['年龄调整'],
|
115 |
+
interactive=True,
|
116 |
+
multiselect=True # 允许多选
|
117 |
+
)
|
118 |
+
|
119 |
+
self.seed_infr = gr.Number(
|
120 |
+
label="种子值",
|
121 |
+
value=42753
|
122 |
+
)
|
123 |
+
|
124 |
+
self.slider_scale_infr = gr.Slider(
|
125 |
+
-4,
|
126 |
+
4,
|
127 |
+
label="滑块刻度",
|
128 |
+
value=3,
|
129 |
+
info="较大的滑块刻度会导致更强的编辑效果"
|
130 |
+
)
|
131 |
+
|
132 |
+
|
133 |
+
self.start_noise_infr = gr.Slider(
|
134 |
+
600, 900,
|
135 |
+
value=750,
|
136 |
+
label="SDEdit时间步",
|
137 |
+
info="选择较小的值以保持更多结构"
|
138 |
+
)
|
139 |
+
self.model_type = gr.Dropdown(
|
140 |
+
label="模型",
|
141 |
+
choices= ['SDXL Turbo', 'SDXL'],
|
142 |
+
value='SDXL Turbo',
|
143 |
+
interactive=True
|
144 |
+
)
|
145 |
+
with gr.Column(scale=2):
|
146 |
+
|
147 |
+
self.infr_button = gr.Button(
|
148 |
+
value="生成",
|
149 |
+
interactive=True
|
150 |
+
)
|
151 |
+
|
152 |
+
with gr.Row():
|
153 |
+
|
154 |
+
self.image_orig = gr.Image(
|
155 |
+
label="原始SD",
|
156 |
+
interactive=False,
|
157 |
+
type='pil',
|
158 |
+
)
|
159 |
+
|
160 |
+
self.image_new = gr.Image(
|
161 |
+
label=f"概念滑块",
|
162 |
+
interactive=False,
|
163 |
+
type='pil',
|
164 |
+
)
|
165 |
+
|
166 |
+
with gr.Tab("训练") as training_column:
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
with gr.Row():
|
169 |
+
|
170 |
+
self.explain_train= gr.Markdown(value='在这一部分,您可以为Stable Diffusion XL训练文本概念滑块。输入您希望进行编辑的目标概念(例如:人)。接下来,输入您希望编辑的属性的增强提示词(例如:控制人的年龄,输入“person, old”)。然后,输入属性的抑制提示词(例如:输入“person, young”)。然后按“训练”按钮。使用默认设置,训练一个滑块大约需要25分钟;然后您可以在上面的“测试”选项卡中尝试推理或下载权重。为了更快的训练,请复制此存储库并使用A100或更大的GPU进行训练。代码和详细信息在[github链接](https://github.com/rohitgandikota/sliders)。')
|
171 |
+
|
172 |
+
with gr.Row():
|
173 |
+
|
174 |
+
with gr.Column(scale=3):
|
175 |
+
|
176 |
+
self.target_concept = gr.Text(
|
177 |
+
placeholder="输入要进行编辑的目标概念...",
|
178 |
+
label="编辑概念的提示词",
|
179 |
+
info="对应于要编辑的概念的提示词(例如:“person”)",
|
180 |
+
value = ''
|
181 |
+
)
|
182 |
+
|
183 |
+
self.positive_prompt = gr.Text(
|
184 |
+
placeholder="输入编辑的增强提示词...",
|
185 |
+
label="增强提示词",
|
186 |
+
info="对应于要增强的概念的提示词(例如:“person, old”)",
|
187 |
+
value = ''
|
188 |
+
)
|
189 |
+
|
190 |
+
self.negative_prompt = gr.Text(
|
191 |
+
placeholder="输入编辑的抑制提示词...",
|
192 |
+
label="抑制提示词",
|
193 |
+
info="对应于要抑制的概念的提示词(例如:“person, young”)",
|
194 |
+
value = ''
|
195 |
+
)
|
196 |
+
|
197 |
+
self.attributes_input = gr.Text(
|
198 |
+
placeholder="输入要保留的概念(用逗号分隔)。如果不需要,请留空...",
|
199 |
+
label="要保留的概念",
|
200 |
+
info="要保留/解缠的概念(例如:“male, female”)",
|
201 |
+
value = ''
|
202 |
+
)
|
203 |
+
self.is_person = gr.Checkbox(
|
204 |
+
label="人",
|
205 |
+
info="您是否在为人训练滑块?")
|
206 |
+
|
207 |
+
self.rank = gr.Number(
|
208 |
+
value=4,
|
209 |
+
label="滑块等级",
|
210 |
+
info='要训练的滑块等级'
|
211 |
+
)
|
212 |
+
choices = ['xattn', 'noxattn']
|
213 |
+
self.train_method_input = gr.Dropdown(
|
214 |
+
choices=choices,
|
215 |
+
value='xattn',
|
216 |
+
label='训练方法',
|
217 |
+
info='训练方法。如果[* xattn *] - loras将仅在交叉注意层上。如果[* noxattn *](官方实现) - 除交叉注意层外的所有层',
|
218 |
+
interactive=True
|
219 |
+
)
|
220 |
+
self.iterations_input = gr.Number(
|
221 |
+
value=500,
|
222 |
+
precision=0,
|
223 |
+
label="迭代次数",
|
224 |
+
info='用于训练的迭代次数 - 最大为1000'
|
225 |
+
)
|
226 |
+
|
227 |
+
self.lr_input = gr.Number(
|
228 |
+
value=2e-4,
|
229 |
+
label="学习率",
|
230 |
+
info='用于训练的学习率'
|
231 |
+
)
|
232 |
+
|
233 |
+
with gr.Column(scale=1):
|
234 |
+
|
235 |
+
self.train_status = gr.Button(value='', variant='primary', interactive=False)
|
236 |
+
|
237 |
+
self.train_button = gr.Button(
|
238 |
+
value="训练",
|
239 |
+
)
|
240 |
+
|
241 |
+
self.download = gr.Files()
|
242 |
+
|
243 |
+
self.infr_button.click(self.inference, inputs = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
self.prompt_input_infr,
|
245 |
+
self.seed_infr,
|
246 |
self.start_noise_infr,
|
247 |
+
self.slider_scale_infr,
|
248 |
+
self.model_dropdown,
|
249 |
+
self.model_type
|
250 |
],
|
251 |
outputs=[
|
252 |
self.image_new,
|
|
|
267 |
outputs=[self.train_button, self.train_status, self.download, self.model_dropdown]
|
268 |
)
|
269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
def train(self, target_concept,positive_prompt, negative_prompt, rank, iterations_input, lr_input, attributes_input, is_person, train_method_input, pbar = gr.Progress(track_tqdm=True)):
|
271 |
iterations_input = min(int(iterations_input),1000)
|
272 |
if attributes_input == '':
|
|
|
297 |
|
298 |
return [gr.update(interactive=True, value='Train'), gr.update(value='Done Training! \n Try your custom slider in the "Test" tab'), f'models/{save_name}', gr.update(choices=list(model_map.keys()), value=save_name.replace('.pt',''))]
|
299 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
301 |
+
def inference(self, prompt, seed, start_noise, scale, model_names, model, pbar = gr.Progress(track_tqdm=True)):
|
302 |
+
|
303 |
+
seed = seed or 42753
|
|
|
|
|
|
|
|
|
304 |
if self.current_model != model:
|
305 |
if model=='SDXL Turbo':
|
306 |
model_id = "stabilityai/sdxl-turbo"
|
307 |
euler_anc = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler")
|
308 |
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=euler_anc, torch_dtype=self.weight_dtype).to(self.device)
|
309 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
|
|
310 |
self.guidance_scale = 1
|
311 |
self.num_inference_steps = 3
|
312 |
self.current_model = 'SDXL Turbo'
|
313 |
else:
|
314 |
model_id = 'stabilityai/stable-diffusion-xl-base-1.0'
|
315 |
self.pipe = StableDiffusionXLPipeline.from_pretrained(model_id, torch_dtype=self.weight_dtype).to(self.device)
|
316 |
+
self.pipe.enable_xformers_memory_efficient_attention()
|
|
|
317 |
self.guidance_scale = 7.5
|
318 |
self.num_inference_steps = 20
|
319 |
self.current_model = 'SDXL'
|
320 |
+
generator = torch.manual_seed(seed)
|
321 |
+
|
322 |
networks = []
|
323 |
for model_name in model_names:
|
324 |
model_path = model_map[model_name]
|
|
|
346 |
if 'alpha1' in model_path:
|
347 |
alpha = 1.0
|
348 |
network = LoRANetwork(
|
349 |
+
unet,
|
350 |
+
rank=rank,
|
351 |
+
multiplier=1.0,
|
352 |
+
alpha=alpha,
|
353 |
+
train_method=train_method,
|
354 |
+
).to(self.device, dtype=self.weight_dtype)
|
355 |
+
network.load_state_dict(torch.load(model_path))
|
356 |
networks.append(network)
|
357 |
|
358 |
+
generator = torch.manual_seed(seed)
|
359 |
+
edited_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=self.num_inference_steps, generator=generator, networks=networks, start_noise=int(start_noise), scale=float(scale), unet=unet, guidance_scale=self.guidance_scale).images[0]
|
360 |
+
|
361 |
+
generator = torch.manual_seed(seed)
|
362 |
+
original_image = self.pipe(prompt, num_images_per_prompt=1, num_inference_steps=self.num_inference_steps, generator=generator, networks=networks, start_noise=start_noise, scale=0, unet=unet, guidance_scale=self.guidance_scale).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
del unet, networks
|
365 |
unet = None
|