|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
AutoTokenizer, |
|
) |
|
from peft import PeftModel, PeftConfig |
|
import torch |
|
import gradio as gr |
|
|
|
d_map = {"": torch.cuda.current_device()} if torch.cuda.is_available() else None |
|
local_model_path = "outputs/checkpoint-100" |
|
|
|
|
|
config = PeftConfig.from_pretrained(local_model_path) |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
config.base_model_name_or_path, |
|
return_dict=True, |
|
torch_dtype=torch.float16, |
|
device_map=d_map, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, trust_remote_code=True) |
|
|
|
|
|
mergedModel = PeftModel.from_pretrained(model, local_model_path) |
|
|
|
mergedModel.eval() |
|
|
|
|
|
|
|
def extract_answer(message): |
|
|
|
start_index = message.find('### Answer:') |
|
if start_index != -1: |
|
|
|
answer_part = message[start_index + len('### Answer:'):].strip() |
|
|
|
last_full_stop_index = answer_part.rfind('.') |
|
if last_full_stop_index != -1: |
|
|
|
answer_part = answer_part[:last_full_stop_index + 1] |
|
return answer_part.strip() |
|
else: |
|
return "I don't have the answer to this question....." |
|
|
|
def inferance(query: str, model, tokenizer, temp = 1.0, limit = 200) -> str: |
|
device = "cuda:0" |
|
|
|
prompt_template = """ |
|
Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
### Question: |
|
{query} |
|
|
|
### Answer: |
|
""" |
|
prompt = prompt_template.format(query=query) |
|
|
|
encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True) |
|
|
|
model_inputs = encodeds.to(device) |
|
|
|
generated_ids = model.generate(**model_inputs, max_new_tokens=int(limit), temperature=temp, do_sample=True, pad_token_id=tokenizer.eos_token_id) |
|
decoded = tokenizer.batch_decode(generated_ids) |
|
return (decoded[0]) |
|
|
|
|
|
|
|
|
|
|
|
def predict(temp, limit, text): |
|
prompt = text |
|
out = inferance(prompt, mergedModel, tokenizer, temp = 1.0, limit = 200) |
|
display = extract_answer(out) |
|
return display |
|
|
|
pred = gr.Interface( |
|
predict, |
|
inputs=[ |
|
gr.Slider(0.001, 10, value=0.1, label="Temperature"), |
|
gr.Slider(1, 1024, value=128, label="Token Limit"), |
|
gr.Textbox( |
|
label="Input", |
|
lines=1, |
|
value="#### Human: What's the capital of Australia?#### Assistant: ", |
|
), |
|
], |
|
outputs='text', |
|
) |
|
|
|
pred.launch(share=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|