from transformers import ( AutoModelForCausalLM, AutoTokenizer, AutoTokenizer, ) from peft import PeftModel, PeftConfig import torch import gradio as gr d_map = {"": torch.cuda.current_device()} if torch.cuda.is_available() else None local_model_path = "outputs/checkpoint-100" # Path to the combined weights # Loading the base Model config = PeftConfig.from_pretrained(local_model_path) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, torch_dtype=torch.float16, device_map=d_map, ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, trust_remote_code=True) # load the base model with the Lora model mergedModel = PeftModel.from_pretrained(model, local_model_path) # model = model.merge_and_unload() mergedModel.eval() def extract_answer(message): # Find the index of '### Answer:' start_index = message.find('### Answer:') if start_index != -1: # Extract the part of the message after '### Answer:' answer_part = message[start_index + len('### Answer:'):].strip() # Find the index of the last full stop last_full_stop_index = answer_part.rfind('.') if last_full_stop_index != -1: # Remove the part after the last full stop answer_part = answer_part[:last_full_stop_index + 1] return answer_part.strip() # Remove leading and trailing whitespace else: return "I don't have the answer to this question....." def inferance(query: str, model, tokenizer, temp = 1.0, limit = 200) -> str: device = "cuda:0" prompt_template = """ Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Question: {query} ### Answer: """ prompt = prompt_template.format(query=query) encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True) model_inputs = encodeds.to(device) generated_ids = model.generate(**model_inputs, max_new_tokens=int(limit), temperature=temp, do_sample=True, pad_token_id=tokenizer.eos_token_id) decoded = tokenizer.batch_decode(generated_ids) return (decoded[0]) def predict(temp, limit, text): prompt = text out = inferance(prompt, mergedModel, tokenizer, temp = 1.0, limit = 200) display = extract_answer(out) return display pred = gr.Interface( predict, inputs=[ gr.Slider(0.001, 10, value=0.1, label="Temperature"), gr.Slider(1, 1024, value=128, label="Token Limit"), gr.Textbox( label="Input", lines=1, value="#### Human: What's the capital of Australia?#### Assistant: ", ), ], outputs='text', ) pred.launch(share=True)