File size: 2,773 Bytes
cd6952b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e24d0f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd6952b
5fb9d86
cd6952b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e24d0f6
 
cd6952b
 
 
e24d0f6
e7375f4
cd6952b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    AutoTokenizer,
)
from peft import PeftModel, PeftConfig
import torch
import gradio as gr

d_map = {"": torch.cuda.current_device()} if torch.cuda.is_available() else None
local_model_path = "outputs/checkpoint-100"     # Path to the combined weights

# Loading the base Model
config = PeftConfig.from_pretrained(local_model_path)

model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path, 
    return_dict=True,
    torch_dtype=torch.float16,
    device_map=d_map,
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, trust_remote_code=True)

# load the base model with the Lora model
mergedModel = PeftModel.from_pretrained(model, local_model_path)
# model = model.merge_and_unload()
mergedModel.eval()



def extract_answer(message):
    # Find the index of '### Answer:'
    start_index = message.find('### Answer:')
    if start_index != -1:
        # Extract the part of the message after '### Answer:'
        answer_part = message[start_index + len('### Answer:'):].strip()
        # Find the index of the last full stop
        last_full_stop_index = answer_part.rfind('.')
        if last_full_stop_index != -1:
            # Remove the part after the last full stop
            answer_part = answer_part[:last_full_stop_index + 1]
        return answer_part.strip()  # Remove leading and trailing whitespace
    else:
        return "I don't have the answer to this question....."

def inferance(query: str, model, tokenizer, temp = 1.0, limit = 200) -> str:
  device = "cuda:0"

  prompt_template = """
  Below is an instruction that describes a task. Write a response that appropriately completes the request.
  ### Question:
  {query}

  ### Answer:
  """
  prompt = prompt_template.format(query=query)

  encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True)

  model_inputs = encodeds.to(device)

  generated_ids = model.generate(**model_inputs, max_new_tokens=int(limit), temperature=temp, do_sample=True, pad_token_id=tokenizer.eos_token_id)
  decoded = tokenizer.batch_decode(generated_ids)
  return (decoded[0])





def predict(temp, limit, text):
    prompt = text
    out = inferance(prompt, mergedModel, tokenizer, temp = 1.0, limit = 200)
    display = extract_answer(out)
    return display

pred = gr.Interface(
    predict,
    inputs=[
        gr.Slider(0.001, 10, value=0.1, label="Temperature"),
        gr.Slider(1, 1024, value=128, label="Token Limit"),
        gr.Textbox(
            label="Input",
            lines=1,
            value="#### Human: What's the capital of Australia?#### Assistant: ",
        ),
    ],
    outputs='text',
)

pred.launch(share=True)