Deeptranslation / app.py
Thanush1's picture
Update app.py
aa84e52 verified
raw
history blame
5.38 kB
import spaces
import gradio as gr
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Model configuration
model_name = "ai4bharat/IndicBART"
# Load tokenizer and model on CPU
print("Loading IndicBART tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name, do_lower_case=False, use_fast=False, keep_accents=True)
print("Loading IndicBART model on CPU...")
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="cpu")
# Language mapping
LANGUAGE_CODES = {
"Assamese": "<2as>",
"Bengali": "<2bn>",
"English": "<2en>",
"Gujarati": "<2gu>",
"Hindi": "<2hi>",
"Kannada": "<2kn>",
"Malayalam": "<2ml>",
"Marathi": "<2mr>",
"Oriya": "<2or>",
"Punjabi": "<2pa>",
"Tamil": "<2ta>",
"Telugu": "<2te>"
}
@spaces.GPU(duration=60)
def generate_response(input_text, source_lang, target_lang, task_type, max_length):
"""Generate response using IndicBART"""
device = "cuda" if torch.cuda.is_available() else "cpu"
model_gpu = model.to(device)
# Get language codes
src_code = LANGUAGE_CODES[source_lang]
tgt_code = LANGUAGE_CODES[target_lang]
# Format input based on task type
if task_type == "Translation":
formatted_input = f"{input_text} </s> {src_code}"
decoder_start_token = tgt_code
elif task_type == "Text Completion":
# For completion, use target language
formatted_input = f"{input_text} </s> {tgt_code}"
decoder_start_token = tgt_code
else: # Text Generation
formatted_input = f"{input_text} </s> {src_code}"
decoder_start_token = tgt_code
# Tokenize input
inputs = tokenizer(formatted_input, return_tensors="pt", padding=True, truncation=True, max_length=512)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Get decoder start token id
decoder_start_token_id = tokenizer._convert_token_to_id_with_added_voc(decoder_start_token)
# Generate
with torch.no_grad():
outputs = model_gpu.generate(
**inputs,
decoder_start_token_id=decoder_start_token_id,
max_length=max_length,
num_beams=4,
early_stopping=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True
)
# Decode output
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
# Move model back to CPU
model_gpu.cpu()
torch.cuda.empty_cache()
return generated_text
# Create Gradio interface
with gr.Blocks(title="IndicBART Multilingual Assistant", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐Ÿ‡ฎ๐Ÿ‡ณ IndicBART Multilingual Assistant
Experience IndicBART - trained on **11 Indian languages**! Perfect for translation, text completion, and multilingual generation.
**Supported Languages**: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu, English
""")
with gr.Row():
with gr.Column(scale=3):
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter text in any supported language...",
lines=3
)
output_text = gr.Textbox(
label="Generated Output",
lines=5,
interactive=False
)
generate_btn = gr.Button("Generate", variant="primary", size="lg")
with gr.Column(scale=1):
task_type = gr.Dropdown(
choices=["Translation", "Text Completion", "Text Generation"],
value="Translation",
label="Task Type"
)
source_lang = gr.Dropdown(
choices=list(LANGUAGE_CODES.keys()),
value="English",
label="Source Language"
)
target_lang = gr.Dropdown(
choices=list(LANGUAGE_CODES.keys()),
value="Hindi",
label="Target Language"
)
max_length = gr.Slider(
minimum=50,
maximum=300,
value=100,
step=10,
label="Max Length"
)
# Examples
gr.Markdown("### ๐Ÿ’ก Try these examples:")
examples = [
["Hello, how are you?", "English", "Hindi", "Translation", 100],
["เคฎเฅˆเค‚ เคเค• เค›เคพเคคเฅเคฐ เคนเฅ‚เค‚", "Hindi", "English", "Translation", 100],
["เฆ†เฆฎเฆฟ เฆญเฆพเฆค เฆ–เฆพเฆ‡", "Bengali", "English", "Translation", 100],
["เคญเคพเคฐเคค เคเค•", "Hindi", "Hindi", "Text Completion", 150],
["The capital of India", "English", "English", "Text Completion", 100]
]
gr.Examples(
examples=examples,
inputs=[input_text, source_lang, target_lang, task_type, max_length],
outputs=output_text,
fn=generate_response
)
# Connect generate button
generate_btn.click(
generate_response,
inputs=[input_text, source_lang, target_lang, task_type, max_length],
outputs=output_text
)
if __name__ == "__main__":
demo.launch()