Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
5 |
+
|
6 |
+
# Model configuration
|
7 |
+
model_name = "ai4bharat/IndicBART"
|
8 |
+
|
9 |
+
# Load tokenizer and model on CPU
|
10 |
+
print("Loading IndicBART tokenizer...")
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, do_lower_case=False, use_fast=False, keep_accents=True)
|
12 |
+
|
13 |
+
print("Loading IndicBART model on CPU...")
|
14 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="cpu")
|
15 |
+
|
16 |
+
# Language mapping
|
17 |
+
LANGUAGE_CODES = {
|
18 |
+
"Assamese": "<2as>",
|
19 |
+
"Bengali": "<2bn>",
|
20 |
+
"English": "<2en>",
|
21 |
+
"Gujarati": "<2gu>",
|
22 |
+
"Hindi": "<2hi>",
|
23 |
+
"Kannada": "<2kn>",
|
24 |
+
"Malayalam": "<2ml>",
|
25 |
+
"Marathi": "<2mr>",
|
26 |
+
"Oriya": "<2or>",
|
27 |
+
"Punjabi": "<2pa>",
|
28 |
+
"Tamil": "<2ta>",
|
29 |
+
"Telugu": "<2te>"
|
30 |
+
}
|
31 |
+
|
32 |
+
@spaces.GPU(duration=60)
|
33 |
+
def generate_response(input_text, source_lang, target_lang, task_type, max_length):
|
34 |
+
"""Generate response using IndicBART"""
|
35 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
36 |
+
model_gpu = model.to(device)
|
37 |
+
|
38 |
+
# Get language codes
|
39 |
+
src_code = LANGUAGE_CODES[source_lang]
|
40 |
+
tgt_code = LANGUAGE_CODES[target_lang]
|
41 |
+
|
42 |
+
# Format input based on task type
|
43 |
+
if task_type == "Translation":
|
44 |
+
formatted_input = f"{input_text} </s> {src_code}"
|
45 |
+
decoder_start_token = tgt_code
|
46 |
+
elif task_type == "Text Completion":
|
47 |
+
# For completion, use target language
|
48 |
+
formatted_input = f"{input_text} </s> {tgt_code}"
|
49 |
+
decoder_start_token = tgt_code
|
50 |
+
else: # Text Generation
|
51 |
+
formatted_input = f"{input_text} </s> {src_code}"
|
52 |
+
decoder_start_token = tgt_code
|
53 |
+
|
54 |
+
# Tokenize input
|
55 |
+
inputs = tokenizer(formatted_input, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
56 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
57 |
+
|
58 |
+
# Get decoder start token id
|
59 |
+
decoder_start_token_id = tokenizer._convert_token_to_id_with_added_voc(decoder_start_token)
|
60 |
+
|
61 |
+
# Generate
|
62 |
+
with torch.no_grad():
|
63 |
+
outputs = model_gpu.generate(
|
64 |
+
**inputs,
|
65 |
+
decoder_start_token_id=decoder_start_token_id,
|
66 |
+
max_length=max_length,
|
67 |
+
num_beams=4,
|
68 |
+
early_stopping=True,
|
69 |
+
pad_token_id=tokenizer.pad_token_id,
|
70 |
+
eos_token_id=tokenizer.eos_token_id,
|
71 |
+
use_cache=True
|
72 |
+
)
|
73 |
+
|
74 |
+
# Decode output
|
75 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
76 |
+
|
77 |
+
# Move model back to CPU
|
78 |
+
model_gpu.cpu()
|
79 |
+
torch.cuda.empty_cache()
|
80 |
+
|
81 |
+
return generated_text
|
82 |
+
|
83 |
+
# Create Gradio interface
|
84 |
+
with gr.Blocks(title="IndicBART Multilingual Assistant", theme=gr.themes.Soft()) as demo:
|
85 |
+
gr.Markdown("""
|
86 |
+
# ๐ฎ๐ณ IndicBART Multilingual Assistant
|
87 |
+
|
88 |
+
Experience IndicBART - trained on **11 Indian languages**! Perfect for translation, text completion, and multilingual generation.
|
89 |
+
|
90 |
+
**Supported Languages**: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu, English
|
91 |
+
""")
|
92 |
+
|
93 |
+
with gr.Row():
|
94 |
+
with gr.Column(scale=3):
|
95 |
+
input_text = gr.Textbox(
|
96 |
+
label="Input Text",
|
97 |
+
placeholder="Enter text in any supported language...",
|
98 |
+
lines=3
|
99 |
+
)
|
100 |
+
|
101 |
+
output_text = gr.Textbox(
|
102 |
+
label="Generated Output",
|
103 |
+
lines=5,
|
104 |
+
interactive=False
|
105 |
+
)
|
106 |
+
|
107 |
+
generate_btn = gr.Button("Generate", variant="primary", size="lg")
|
108 |
+
|
109 |
+
with gr.Column(scale=1):
|
110 |
+
task_type = gr.Dropdown(
|
111 |
+
choices=["Translation", "Text Completion", "Text Generation"],
|
112 |
+
value="Translation",
|
113 |
+
label="Task Type"
|
114 |
+
)
|
115 |
+
|
116 |
+
source_lang = gr.Dropdown(
|
117 |
+
choices=list(LANGUAGE_CODES.keys()),
|
118 |
+
value="English",
|
119 |
+
label="Source Language"
|
120 |
+
)
|
121 |
+
|
122 |
+
target_lang = gr.Dropdown(
|
123 |
+
choices=list(LANGUAGE_CODES.keys()),
|
124 |
+
value="Hindi",
|
125 |
+
label="Target Language"
|
126 |
+
)
|
127 |
+
|
128 |
+
max_length = gr.Slider(
|
129 |
+
minimum=50,
|
130 |
+
maximum=300,
|
131 |
+
value=100,
|
132 |
+
step=10,
|
133 |
+
label="Max Length"
|
134 |
+
)
|
135 |
+
|
136 |
+
# Examples
|
137 |
+
gr.Markdown("### ๐ก Try these examples:")
|
138 |
+
|
139 |
+
examples = [
|
140 |
+
["Hello, how are you?", "English", "Hindi", "Translation", 100],
|
141 |
+
["เคฎเฅเค เคเค เคเคพเคคเฅเคฐ เคนเฅเค", "Hindi", "English", "Translation", 100],
|
142 |
+
["เฆเฆฎเฆฟ เฆญเฆพเฆค เฆเฆพเฆ", "Bengali", "English", "Translation", 100],
|
143 |
+
["เคญเคพเคฐเคค เคเค", "Hindi", "Hindi", "Text Completion", 150],
|
144 |
+
["The capital of India", "English", "English", "Text Completion", 100]
|
145 |
+
]
|
146 |
+
|
147 |
+
gr.Examples(
|
148 |
+
examples=examples,
|
149 |
+
inputs=[input_text, source_lang, target_lang, task_type, max_length],
|
150 |
+
outputs=output_text,
|
151 |
+
fn=generate_response
|
152 |
+
)
|
153 |
+
|
154 |
+
# Connect generate button
|
155 |
+
generate_btn.click(
|
156 |
+
generate_response,
|
157 |
+
inputs=[input_text, source_lang, target_lang, task_type, max_length],
|
158 |
+
outputs=output_text
|
159 |
+
)
|
160 |
+
|
161 |
+
if __name__ == "__main__":
|
162 |
+
demo.launch()
|