File size: 5,382 Bytes
aa84e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import spaces
import gradio as gr
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer

# Model configuration
model_name = "ai4bharat/IndicBART"

# Load tokenizer and model on CPU
print("Loading IndicBART tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name, do_lower_case=False, use_fast=False, keep_accents=True)

print("Loading IndicBART model on CPU...")
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="cpu")

# Language mapping
LANGUAGE_CODES = {
    "Assamese": "<2as>",
    "Bengali": "<2bn>", 
    "English": "<2en>",
    "Gujarati": "<2gu>",
    "Hindi": "<2hi>",
    "Kannada": "<2kn>",
    "Malayalam": "<2ml>",
    "Marathi": "<2mr>",
    "Oriya": "<2or>",
    "Punjabi": "<2pa>",
    "Tamil": "<2ta>",
    "Telugu": "<2te>"
}

@spaces.GPU(duration=60)
def generate_response(input_text, source_lang, target_lang, task_type, max_length):
    """Generate response using IndicBART"""
    device = "cuda" if torch.cuda.is_available() else "cpu"
    model_gpu = model.to(device)
    
    # Get language codes
    src_code = LANGUAGE_CODES[source_lang]
    tgt_code = LANGUAGE_CODES[target_lang]
    
    # Format input based on task type
    if task_type == "Translation":
        formatted_input = f"{input_text} </s> {src_code}"
        decoder_start_token = tgt_code
    elif task_type == "Text Completion":
        # For completion, use target language
        formatted_input = f"{input_text} </s> {tgt_code}"
        decoder_start_token = tgt_code
    else:  # Text Generation
        formatted_input = f"{input_text} </s> {src_code}"
        decoder_start_token = tgt_code
    
    # Tokenize input
    inputs = tokenizer(formatted_input, return_tensors="pt", padding=True, truncation=True, max_length=512)
    inputs = {k: v.to(device) for k, v in inputs.items()}
    
    # Get decoder start token id
    decoder_start_token_id = tokenizer._convert_token_to_id_with_added_voc(decoder_start_token)
    
    # Generate
    with torch.no_grad():
        outputs = model_gpu.generate(
            **inputs,
            decoder_start_token_id=decoder_start_token_id,
            max_length=max_length,
            num_beams=4,
            early_stopping=True,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
            use_cache=True
        )
    
    # Decode output
    generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
    
    # Move model back to CPU
    model_gpu.cpu()
    torch.cuda.empty_cache()
    
    return generated_text

# Create Gradio interface
with gr.Blocks(title="IndicBART Multilingual Assistant", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # ๐Ÿ‡ฎ๐Ÿ‡ณ IndicBART Multilingual Assistant
    
    Experience IndicBART - trained on **11 Indian languages**! Perfect for translation, text completion, and multilingual generation.
    
    **Supported Languages**: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu, English
    """)
    
    with gr.Row():
        with gr.Column(scale=3):
            input_text = gr.Textbox(
                label="Input Text",
                placeholder="Enter text in any supported language...",
                lines=3
            )
            
            output_text = gr.Textbox(
                label="Generated Output",
                lines=5,
                interactive=False
            )
            
            generate_btn = gr.Button("Generate", variant="primary", size="lg")
        
        with gr.Column(scale=1):
            task_type = gr.Dropdown(
                choices=["Translation", "Text Completion", "Text Generation"],
                value="Translation",
                label="Task Type"
            )
            
            source_lang = gr.Dropdown(
                choices=list(LANGUAGE_CODES.keys()),
                value="English",
                label="Source Language"
            )
            
            target_lang = gr.Dropdown(
                choices=list(LANGUAGE_CODES.keys()),
                value="Hindi",
                label="Target Language"
            )
            
            max_length = gr.Slider(
                minimum=50,
                maximum=300,
                value=100,
                step=10,
                label="Max Length"
            )
    
    # Examples
    gr.Markdown("### ๐Ÿ’ก Try these examples:")
    
    examples = [
        ["Hello, how are you?", "English", "Hindi", "Translation", 100],
        ["เคฎเฅˆเค‚ เคเค• เค›เคพเคคเฅเคฐ เคนเฅ‚เค‚", "Hindi", "English", "Translation", 100],
        ["เฆ†เฆฎเฆฟ เฆญเฆพเฆค เฆ–เฆพเฆ‡", "Bengali", "English", "Translation", 100],
        ["เคญเคพเคฐเคค เคเค•", "Hindi", "Hindi", "Text Completion", 150],
        ["The capital of India", "English", "English", "Text Completion", 100]
    ]
    
    gr.Examples(
        examples=examples,
        inputs=[input_text, source_lang, target_lang, task_type, max_length],
        outputs=output_text,
        fn=generate_response
    )
    
    # Connect generate button
    generate_btn.click(
        generate_response,
        inputs=[input_text, source_lang, target_lang, task_type, max_length],
        outputs=output_text
    )

if __name__ == "__main__":
    demo.launch()