Spaces:
Runtime error
Runtime error
File size: 5,382 Bytes
aa84e52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
import spaces
import gradio as gr
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Model configuration
model_name = "ai4bharat/IndicBART"
# Load tokenizer and model on CPU
print("Loading IndicBART tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name, do_lower_case=False, use_fast=False, keep_accents=True)
print("Loading IndicBART model on CPU...")
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="cpu")
# Language mapping
LANGUAGE_CODES = {
"Assamese": "<2as>",
"Bengali": "<2bn>",
"English": "<2en>",
"Gujarati": "<2gu>",
"Hindi": "<2hi>",
"Kannada": "<2kn>",
"Malayalam": "<2ml>",
"Marathi": "<2mr>",
"Oriya": "<2or>",
"Punjabi": "<2pa>",
"Tamil": "<2ta>",
"Telugu": "<2te>"
}
@spaces.GPU(duration=60)
def generate_response(input_text, source_lang, target_lang, task_type, max_length):
"""Generate response using IndicBART"""
device = "cuda" if torch.cuda.is_available() else "cpu"
model_gpu = model.to(device)
# Get language codes
src_code = LANGUAGE_CODES[source_lang]
tgt_code = LANGUAGE_CODES[target_lang]
# Format input based on task type
if task_type == "Translation":
formatted_input = f"{input_text} </s> {src_code}"
decoder_start_token = tgt_code
elif task_type == "Text Completion":
# For completion, use target language
formatted_input = f"{input_text} </s> {tgt_code}"
decoder_start_token = tgt_code
else: # Text Generation
formatted_input = f"{input_text} </s> {src_code}"
decoder_start_token = tgt_code
# Tokenize input
inputs = tokenizer(formatted_input, return_tensors="pt", padding=True, truncation=True, max_length=512)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Get decoder start token id
decoder_start_token_id = tokenizer._convert_token_to_id_with_added_voc(decoder_start_token)
# Generate
with torch.no_grad():
outputs = model_gpu.generate(
**inputs,
decoder_start_token_id=decoder_start_token_id,
max_length=max_length,
num_beams=4,
early_stopping=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True
)
# Decode output
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
# Move model back to CPU
model_gpu.cpu()
torch.cuda.empty_cache()
return generated_text
# Create Gradio interface
with gr.Blocks(title="IndicBART Multilingual Assistant", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐ฎ๐ณ IndicBART Multilingual Assistant
Experience IndicBART - trained on **11 Indian languages**! Perfect for translation, text completion, and multilingual generation.
**Supported Languages**: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu, English
""")
with gr.Row():
with gr.Column(scale=3):
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter text in any supported language...",
lines=3
)
output_text = gr.Textbox(
label="Generated Output",
lines=5,
interactive=False
)
generate_btn = gr.Button("Generate", variant="primary", size="lg")
with gr.Column(scale=1):
task_type = gr.Dropdown(
choices=["Translation", "Text Completion", "Text Generation"],
value="Translation",
label="Task Type"
)
source_lang = gr.Dropdown(
choices=list(LANGUAGE_CODES.keys()),
value="English",
label="Source Language"
)
target_lang = gr.Dropdown(
choices=list(LANGUAGE_CODES.keys()),
value="Hindi",
label="Target Language"
)
max_length = gr.Slider(
minimum=50,
maximum=300,
value=100,
step=10,
label="Max Length"
)
# Examples
gr.Markdown("### ๐ก Try these examples:")
examples = [
["Hello, how are you?", "English", "Hindi", "Translation", 100],
["เคฎเฅเค เคเค เคเคพเคคเฅเคฐ เคนเฅเค", "Hindi", "English", "Translation", 100],
["เฆเฆฎเฆฟ เฆญเฆพเฆค เฆเฆพเฆ", "Bengali", "English", "Translation", 100],
["เคญเคพเคฐเคค เคเค", "Hindi", "Hindi", "Text Completion", 150],
["The capital of India", "English", "English", "Text Completion", 100]
]
gr.Examples(
examples=examples,
inputs=[input_text, source_lang, target_lang, task_type, max_length],
outputs=output_text,
fn=generate_response
)
# Connect generate button
generate_btn.click(
generate_response,
inputs=[input_text, source_lang, target_lang, task_type, max_length],
outputs=output_text
)
if __name__ == "__main__":
demo.launch()
|