Spaces:
Runtime error
Runtime error
File size: 7,152 Bytes
aa84e52 a31db9e 4320235 a31db9e aa84e52 a31db9e aa84e52 4320235 a31db9e 4320235 845f6f3 4320235 845f6f3 aa84e52 4320235 845f6f3 4320235 845f6f3 4320235 845f6f3 4320235 aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e aa84e52 a31db9e 4320235 a31db9e aa84e52 845f6f3 aa84e52 4320235 aa84e52 a31db9e 4320235 a31db9e aa84e52 a31db9e 4320235 845f6f3 aa84e52 de2970a 4320235 845f6f3 de2970a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import gradio as gr
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
# Model configuration
model_name = "ai4bharat/IndicBART"
# Load tokenizer and model on CPU
print("Loading IndicBART tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_name, do_lower_case=False, use_fast=False, keep_accents=True)
print("Loading IndicBART model on CPU...")
model = AutoModelForSeq2SeqLM.from_pretrained(
model_name,
torch_dtype=torch.float32,
device_map="cpu"
)
# Language mapping
LANGUAGE_CODES = {
"Assamese": "<2as>",
"Bengali": "<2bn>",
"English": "<2en>",
"Gujarati": "<2gu>",
"Hindi": "<2hi>",
"Kannada": "<2kn>",
"Malayalam": "<2ml>",
"Marathi": "<2mr>",
"Oriya": "<2or>",
"Punjabi": "<2pa>",
"Tamil": "<2ta>",
"Telugu": "<2te>"
}
def generate_response(input_text, source_lang, target_lang, task_type, max_length):
"""Generate response using IndicBART on CPU"""
if not input_text.strip():
return "Please enter some text to process."
try:
# Get language codes
src_code = LANGUAGE_CODES[source_lang]
tgt_code = LANGUAGE_CODES[target_lang]
# Format input based on task type
if task_type == "Translation":
formatted_input = f"{input_text} </s> {src_code}"
decoder_start_token = tgt_code
elif task_type == "Text Completion":
formatted_input = f"{input_text} </s> {tgt_code}"
decoder_start_token = tgt_code
else: # Text Generation
formatted_input = f"{input_text} </s> {src_code}"
decoder_start_token = tgt_code
# FIX 1: Tokenize with explicit token_type_ids=False
inputs = tokenizer(
formatted_input,
return_tensors="pt",
padding=True,
truncation=True,
max_length=512,
return_token_type_ids=False # KEY FIX: Prevent token_type_ids
)
# FIX 2: Alternative approach - manually remove if present
if 'token_type_ids' in inputs:
del inputs['token_type_ids']
# Get decoder start token id
try:
decoder_start_token_id = tokenizer._convert_token_to_id_with_added_voc(decoder_start_token)
except:
decoder_start_token_id = tokenizer.convert_tokens_to_ids(decoder_start_token)
# FIX 3: Use explicit parameters instead of **inputs (most reliable)
with torch.no_grad():
outputs = model.generate(
input_ids=inputs['input_ids'], # Explicit parameter
attention_mask=inputs['attention_mask'], # Explicit parameter
decoder_start_token_id=decoder_start_token_id,
max_length=max_length,
num_beams=2,
early_stopping=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
use_cache=True,
do_sample=False
)
# Decode output
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
return generated_text
except Exception as e:
return f"Error generating response: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="IndicBART CPU Multilingual Assistant", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# ๐ฎ๐ณ IndicBART Multilingual Assistant (CPU Version)
Experience IndicBART - trained on **11 Indian languages**! Perfect for translation, text completion, and multilingual generation.
**Supported Languages**: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu, English
""")
with gr.Row():
with gr.Column(scale=3):
input_text = gr.Textbox(
label="Input Text",
placeholder="Enter text in any supported language...",
lines=3
)
output_text = gr.Textbox(
label="Generated Output",
lines=5,
interactive=False
)
with gr.Row():
generate_btn = gr.Button("Generate", variant="primary", size="lg")
clear_btn = gr.Button("Clear", variant="secondary")
with gr.Column(scale=1):
task_type = gr.Dropdown(
choices=["Translation", "Text Completion", "Text Generation"],
value="Translation",
label="Task Type"
)
source_lang = gr.Dropdown(
choices=list(LANGUAGE_CODES.keys()),
value="English",
label="Source Language"
)
target_lang = gr.Dropdown(
choices=list(LANGUAGE_CODES.keys()),
value="Hindi",
label="Target Language"
)
max_length = gr.Slider(
minimum=20,
maximum=200,
value=80,
step=10,
label="Max Length"
)
# Simple examples without caching
gr.Markdown("### ๐ก Try these examples:")
with gr.Row():
with gr.Column():
gr.Markdown("**English to Hindi**")
example1_btn = gr.Button("Hello, how are you?")
with gr.Column():
gr.Markdown("**Hindi to English**")
example2_btn = gr.Button("เคฎเฅเค เคเค เคเคพเคคเฅเคฐ เคนเฅเค")
with gr.Column():
gr.Markdown("**Bengali to English**")
example3_btn = gr.Button("เฆเฆฎเฆฟ เฆญเฆพเฆค เฆเฆพเฆ")
# Event handlers
def clear_fields():
return "", ""
def set_example1():
return "Hello, how are you?", "English", "Hindi", "Translation"
def set_example2():
return "เคฎเฅเค เคเค เคเคพเคคเฅเคฐ เคนเฅเค", "Hindi", "English", "Translation"
def set_example3():
return "เฆเฆฎเฆฟ เฆญเฆพเฆค เฆเฆพเฆ", "Bengali", "English", "Translation"
# Connect buttons
generate_btn.click(
generate_response,
inputs=[input_text, source_lang, target_lang, task_type, max_length],
outputs=output_text
)
clear_btn.click(
clear_fields,
outputs=[input_text, output_text]
)
example1_btn.click(
set_example1,
outputs=[input_text, source_lang, target_lang, task_type]
)
example2_btn.click(
set_example2,
outputs=[input_text, source_lang, target_lang, task_type]
)
example3_btn.click(
set_example3,
outputs=[input_text, source_lang, target_lang, task_type]
)
# FIX 4: Updated launch parameters (removed cache_examples)
if __name__ == "__main__":
demo.launch(
share=True,
show_error=True,
enable_queue=False,
# Removed cache_examples parameter - not supported in newer Gradio versions
)
|