Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -12,7 +12,7 @@ tokenizer = AutoTokenizer.from_pretrained(model_name, do_lower_case=False, use_f
|
|
12 |
print("Loading IndicBART model on CPU...")
|
13 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
14 |
model_name,
|
15 |
-
torch_dtype=torch.float32,
|
16 |
device_map="cpu"
|
17 |
)
|
18 |
|
@@ -35,50 +35,65 @@ LANGUAGE_CODES = {
|
|
35 |
def generate_response(input_text, source_lang, target_lang, task_type, max_length):
|
36 |
"""Generate response using IndicBART on CPU"""
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
# Format input based on task type
|
43 |
-
if task_type == "Translation":
|
44 |
-
formatted_input = f"{input_text} </s> {src_code}"
|
45 |
-
decoder_start_token = tgt_code
|
46 |
-
elif task_type == "Text Completion":
|
47 |
-
# For completion, use target language
|
48 |
-
formatted_input = f"{input_text} </s> {tgt_code}"
|
49 |
-
decoder_start_token = tgt_code
|
50 |
-
else: # Text Generation
|
51 |
-
formatted_input = f"{input_text} </s> {src_code}"
|
52 |
-
decoder_start_token = tgt_code
|
53 |
-
|
54 |
-
# Tokenize input (keep on CPU)
|
55 |
-
inputs = tokenizer(formatted_input, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
56 |
-
|
57 |
-
# Get decoder start token id
|
58 |
try:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
)
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
# Create Gradio interface
|
84 |
with gr.Blocks(title="IndicBART CPU Multilingual Assistant", theme=gr.themes.Soft()) as demo:
|
@@ -88,8 +103,6 @@ with gr.Blocks(title="IndicBART CPU Multilingual Assistant", theme=gr.themes.Sof
|
|
88 |
Experience IndicBART - trained on **11 Indian languages**! Perfect for translation, text completion, and multilingual generation.
|
89 |
|
90 |
**Supported Languages**: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu, English
|
91 |
-
|
92 |
-
*Note: Running on CPU - responses may take longer than GPU version.*
|
93 |
""")
|
94 |
|
95 |
with gr.Row():
|
@@ -131,34 +144,39 @@ with gr.Blocks(title="IndicBART CPU Multilingual Assistant", theme=gr.themes.Sof
|
|
131 |
|
132 |
max_length = gr.Slider(
|
133 |
minimum=20,
|
134 |
-
maximum=200,
|
135 |
value=80,
|
136 |
step=10,
|
137 |
label="Max Length"
|
138 |
)
|
139 |
|
140 |
-
#
|
141 |
gr.Markdown("### 💡 Try these examples:")
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
inputs=[input_text, source_lang, target_lang, task_type, max_length],
|
154 |
-
outputs=output_text,
|
155 |
-
fn=generate_response
|
156 |
-
)
|
157 |
|
158 |
# Event handlers
|
159 |
def clear_fields():
|
160 |
return "", ""
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
# Connect buttons
|
163 |
generate_btn.click(
|
164 |
generate_response,
|
@@ -170,9 +188,28 @@ with gr.Blocks(title="IndicBART CPU Multilingual Assistant", theme=gr.themes.Sof
|
|
170 |
clear_fields,
|
171 |
outputs=[input_text, output_text]
|
172 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
if __name__ == "__main__":
|
174 |
demo.launch(
|
175 |
share=True,
|
176 |
-
|
177 |
-
|
|
|
|
|
178 |
)
|
|
|
12 |
print("Loading IndicBART model on CPU...")
|
13 |
model = AutoModelForSeq2SeqLM.from_pretrained(
|
14 |
model_name,
|
15 |
+
torch_dtype=torch.float32,
|
16 |
device_map="cpu"
|
17 |
)
|
18 |
|
|
|
35 |
def generate_response(input_text, source_lang, target_lang, task_type, max_length):
|
36 |
"""Generate response using IndicBART on CPU"""
|
37 |
|
38 |
+
if not input_text.strip():
|
39 |
+
return "Please enter some text to process."
|
40 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
try:
|
42 |
+
# Get language codes
|
43 |
+
src_code = LANGUAGE_CODES[source_lang]
|
44 |
+
tgt_code = LANGUAGE_CODES[target_lang]
|
45 |
+
|
46 |
+
# Format input based on task type
|
47 |
+
if task_type == "Translation":
|
48 |
+
formatted_input = f"{input_text} </s> {src_code}"
|
49 |
+
decoder_start_token = tgt_code
|
50 |
+
elif task_type == "Text Completion":
|
51 |
+
formatted_input = f"{input_text} </s> {tgt_code}"
|
52 |
+
decoder_start_token = tgt_code
|
53 |
+
else: # Text Generation
|
54 |
+
formatted_input = f"{input_text} </s> {src_code}"
|
55 |
+
decoder_start_token = tgt_code
|
56 |
+
|
57 |
+
# Tokenize input - KEY FIX: Explicitly set return_token_type_ids=False
|
58 |
+
inputs = tokenizer(
|
59 |
+
formatted_input,
|
60 |
+
return_tensors="pt",
|
61 |
+
padding=True,
|
62 |
+
truncation=True,
|
63 |
+
max_length=512,
|
64 |
+
return_token_type_ids=False # This prevents the error
|
65 |
)
|
66 |
+
|
67 |
+
# Alternative fix: Remove token_type_ids if present
|
68 |
+
if 'token_type_ids' in inputs:
|
69 |
+
del inputs['token_type_ids']
|
70 |
+
|
71 |
+
# Get decoder start token id
|
72 |
+
try:
|
73 |
+
decoder_start_token_id = tokenizer._convert_token_to_id_with_added_voc(decoder_start_token)
|
74 |
+
except:
|
75 |
+
decoder_start_token_id = tokenizer.convert_tokens_to_ids(decoder_start_token)
|
76 |
+
|
77 |
+
# Generate on CPU
|
78 |
+
with torch.no_grad():
|
79 |
+
outputs = model.generate(
|
80 |
+
**inputs,
|
81 |
+
decoder_start_token_id=decoder_start_token_id,
|
82 |
+
max_length=max_length,
|
83 |
+
num_beams=2,
|
84 |
+
early_stopping=True,
|
85 |
+
pad_token_id=tokenizer.pad_token_id,
|
86 |
+
eos_token_id=tokenizer.eos_token_id,
|
87 |
+
use_cache=True,
|
88 |
+
do_sample=False
|
89 |
+
)
|
90 |
+
|
91 |
+
# Decode output
|
92 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
93 |
+
return generated_text
|
94 |
+
|
95 |
+
except Exception as e:
|
96 |
+
return f"Error generating response: {str(e)}"
|
97 |
|
98 |
# Create Gradio interface
|
99 |
with gr.Blocks(title="IndicBART CPU Multilingual Assistant", theme=gr.themes.Soft()) as demo:
|
|
|
103 |
Experience IndicBART - trained on **11 Indian languages**! Perfect for translation, text completion, and multilingual generation.
|
104 |
|
105 |
**Supported Languages**: Assamese, Bengali, Gujarati, Hindi, Kannada, Malayalam, Marathi, Oriya, Punjabi, Tamil, Telugu, English
|
|
|
|
|
106 |
""")
|
107 |
|
108 |
with gr.Row():
|
|
|
144 |
|
145 |
max_length = gr.Slider(
|
146 |
minimum=20,
|
147 |
+
maximum=200,
|
148 |
value=80,
|
149 |
step=10,
|
150 |
label="Max Length"
|
151 |
)
|
152 |
|
153 |
+
# Simplified examples to avoid caching issues
|
154 |
gr.Markdown("### 💡 Try these examples:")
|
155 |
|
156 |
+
with gr.Row():
|
157 |
+
with gr.Column():
|
158 |
+
gr.Markdown("**English to Hindi**")
|
159 |
+
example1_btn = gr.Button("Hello, how are you?")
|
160 |
+
with gr.Column():
|
161 |
+
gr.Markdown("**Hindi to English**")
|
162 |
+
example2_btn = gr.Button("मैं एक छात्र हूं")
|
163 |
+
with gr.Column():
|
164 |
+
gr.Markdown("**Bengali to English**")
|
165 |
+
example3_btn = gr.Button("আমি ভাত খাই")
|
|
|
|
|
|
|
|
|
166 |
|
167 |
# Event handlers
|
168 |
def clear_fields():
|
169 |
return "", ""
|
170 |
|
171 |
+
def set_example1():
|
172 |
+
return "Hello, how are you?", "English", "Hindi", "Translation"
|
173 |
+
|
174 |
+
def set_example2():
|
175 |
+
return "मैं एक छात्र हूं", "Hindi", "English", "Translation"
|
176 |
+
|
177 |
+
def set_example3():
|
178 |
+
return "আমি ভাত খাই", "Bengali", "English", "Translation"
|
179 |
+
|
180 |
# Connect buttons
|
181 |
generate_btn.click(
|
182 |
generate_response,
|
|
|
188 |
clear_fields,
|
189 |
outputs=[input_text, output_text]
|
190 |
)
|
191 |
+
|
192 |
+
example1_btn.click(
|
193 |
+
set_example1,
|
194 |
+
outputs=[input_text, source_lang, target_lang, task_type]
|
195 |
+
)
|
196 |
+
|
197 |
+
example2_btn.click(
|
198 |
+
set_example2,
|
199 |
+
outputs=[input_text, source_lang, target_lang, task_type]
|
200 |
+
)
|
201 |
+
|
202 |
+
example3_btn.click(
|
203 |
+
set_example3,
|
204 |
+
outputs=[input_text, source_lang, target_lang, task_type]
|
205 |
+
)
|
206 |
+
|
207 |
+
# Launch with all fixes applied
|
208 |
if __name__ == "__main__":
|
209 |
demo.launch(
|
210 |
share=True,
|
211 |
+
ssr_mode=False, # Disable SSR
|
212 |
+
cache_examples=False, # Disable example caching - KEY FIX
|
213 |
+
show_error=True,
|
214 |
+
enable_queue=False # Disable queue to avoid startup issues
|
215 |
)
|